References of "Beckers, Arnaud"
     in
Bookmark and Share    
See detailMarine paleoseismology in the Western Gulf of Corinth (Greece) for the last 500 years
Beckers, Arnaud ULg; Mortier, Clément; Beck, Christian et al

Scientific conference (2014, January 15)

Related to the Gulf of Corinth rifting, five earthquakes of magnitude greater than 5.8 occurred in the last 35 years. Consequently, the question of earthquake (EQ) hazard is particularly relevant. Onland ... [more ▼]

Related to the Gulf of Corinth rifting, five earthquakes of magnitude greater than 5.8 occurred in the last 35 years. Consequently, the question of earthquake (EQ) hazard is particularly relevant. Onland, paleoseismological data are scarce and offshore data were absent before the present study. We investigated recent sediments bounding three well-defined major seismogenic faults. We retrieved 12 gravity cores from 50 to 85 cm long in three distinct sites: the southern shelf (40 to 50 m deep), a 180 m deep sub-basin, and a transect from the southern coast to the center of the gulf. We performed grain size analysis, magnetic susceptibility, loss on ignition and geochemical (X-Ray Fluorescence) measurements on cores from each site. We sought to identify layers potentially attributed to EQ-related processes like liquefaction and tsunamis for the sites on the shelves or mass transport and turbidity currents for the basins. Chronology is based on 137Cs (Atmospheric Nuclear Experiments) and 210Pb decay. Considering sedimentation rates estimates in these areas, the longer cores record about 500 years of sedimentary archives. On the southern shelf, 3 coarser layers have been identified at identical depth in 3 cores. 210Pb decay show erosion just under the first event that we attributed to the 1995 tsunami (backwash flow deposit). In the 180m deep sub-basin, among 3 clear grain-size peaks, two have been attributed to the 1817 Aegion EQ and the 1660 Galaxidi EQ. In last site, 10 “events” (grain-size and Zr/Rb peaks) have been identified in the deepest part of the transect 4 on the shelf. Their analysis is in progress, as well as paleomagnetic measurements. [less ▲]

Detailed reference viewed: 22 (0 ULg)
Peer Reviewed
See detailLate Quaternay sedimentation and active faulting in the Western tip of the Gulf of Corinth, Greece
Hubert, Aurelia ULg; Beckers, Arnaud ULg; Beck, Christian et al

Poster (2013, November 06)

The Gulf of Corinth is one of the fastest-spreading intracontinental rifts on Earth. Present day kinematics (GPS data) indicates an opening direction oriented NNE-SSW and an opening rate increasing ... [more ▼]

The Gulf of Corinth is one of the fastest-spreading intracontinental rifts on Earth. Present day kinematics (GPS data) indicates an opening direction oriented NNE-SSW and an opening rate increasing westward from 11 mm y-1 in the central part to 16 mm y-1 in the westernmost part. A significant part of the deformation is localized offshore, where the fault geometry was not well known yet. The high extension rate would imply a high seismic hazard if faults are not creeping. We propose an accurate map of submarine faults in the western extremity of the Gulf of Corinth. The map is based on two high-resolution seismic reflection surveys (single channel sparker) performed aboard HCMR’s R/V ALKYON, within the frame of SISCOR ANR Project. About 600 km of seismic lines were acquired, with a 200 msTWTT maximum penetration down to what we infer to represent the MIS 5 discontinuity. Depocenters location is controlled by river deltas where up to 75m of post-LGM sediments are stored. Numerous, up to 15m thick, mass transport deposits fill the central and eastern parts. In the eastern part, the sedimentary infill is faulted by the known North Eratini, South Eratini and West Channel faults. At the longitude of the Trizonia Island, the seafloor in mainly horizontal and the only fault is the south dipping Trizonia fault. Between the Trizonia Island and the Mornos Delta, the shallower northern part of the gulf shows a diffuse pattern of deformation with faults striking mainly E-W and ESE-WNW. It shows south and north dipping normal faults, strike-slip faults, as well as an inherited basement relief. To the West, three young grabens have been identified, striking NE-SW and W-E. The northern, 6 km long, fault in this grabens system shows a clear strike-slip component (fig.1). [less ▲]

Detailed reference viewed: 10 (0 ULg)
Peer Reviewed
See detailPotential paleoseismological records in the Western Gulf of Corinth sediments (Greece) for the last 500 years
Beckers, Arnaud ULg; Mortier, Clément; Beck, Christian et al

Conference (2013, November 06)

Related to the Gulf of Corinth rifting, five earthquakes of magnitude greater than 5.8 occurred in the last 35 years. Consequently, the question of earthquake (EQ) hazard is particularly relevant. Onland ... [more ▼]

Related to the Gulf of Corinth rifting, five earthquakes of magnitude greater than 5.8 occurred in the last 35 years. Consequently, the question of earthquake (EQ) hazard is particularly relevant. Onland paleoseismological data are scarce and offshore data were absent before the present study. We investigated recent sediments bounding three well-defined major seismogenic faults: Aegion, Trizonia and Psathopyrgos faults. We retrieved 12 gravity cores from 50 to 85 cm long in three distinct sites: the southern shelf (40 to 50 m deep), a 180 m deep sub-basin, and a transect from the southern coast to the center of the gulf. Chronology is based on 137Cs (Atmospheric Nuclear Experiments) and 210Pb decay for two sites (Aegion and Trizonia). Considering sedimentation rates estimates in these areas, the longer cores record about 500 years of sedimentary archives. We performed granulometry, magnetic susceptibility, loss on ignition and geochemical (X-Ray Fluorescence) measurements on cores from each site. Some samples were observed with a binocular to identify the nature of the grains. We sought to identify layers potentially attributed to EQ-related processes like liquefaction and tsunamis for the sites on the shelves or mass transport and turbidity currents for the basins. In Aegion, 3 coarser layers have been identified at identical depth in 3 cores across the scarp. 210Pb decay show erosion just under the first event, that we attributed to the 1995 tsunami (backwash deposit) (figure). In the Trizonia Sub-Basin, among 3 clear grain-size peaks, two have been attributed to the 1817 Aegion EQ and the 1660 Galaxidi EQ. In Psathopyrgos, 10 “events” (grain-size and Zr/Rb peaks) have been identified in the deepest part of the transect and at least 2 on the shelf. Their analysis is in progress. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
Peer Reviewed
See detailContribution of land use changes to future flood damage along the river Meuse in the Walloon region
Beckers, Arnaud ULg; Dewals, Benjamin ULg; Erpicum, Sébastien ULg et al

in Natural Hazards & Earth System Sciences (2013), 13

Managing flood risk in Europe is a critical issue because climate change is expected to increase flood hazard in many european countries. Beside climate change, land use evolution is also a key factor ... [more ▼]

Managing flood risk in Europe is a critical issue because climate change is expected to increase flood hazard in many european countries. Beside climate change, land use evolution is also a key factor influencing future flood risk. The core contribution of this paper is a new methodology to model residential land use evolution. Based on two climate scenarios (“dry” and “wet”), the method is applied to study the evolution of flood damage by 2100 along the river Meuse. Nine urbanization scenarios were developed: three of them assume a “current trend” land use evolution, leading to a significant urban sprawl, while six others assume a dense urban development, characterized by a higher density and a higher diversity of urban functions in the urbanized areas. Using damage curves, the damage estimation was performed by combining inundation maps for the present and future 100 yr flood with present and future land use maps and specific prices. According to the dry scenario, the flood discharge is expected not to increase. In this case, land use changes increase flood damages by 1–40 %, to EUR 334–462 million in 2100. In the wet scenario, the relative increase in flood damage is 540–630 %, corresponding to total damages of EUR 2.1–2.4 billion. In this extreme scenario, the influence of climate on the overall damage is 3–8 times higher than the effect of land use change. However, for seven municipalities along the river Meuse, these two factors have a comparable influence. Consequently, in the “wet” scenario and at the level of the whole Meuse valley in the Walloon region, careful spatial planning would reduce the increase in flood damage by no more than 11–23 %; but, at the level of several municipalities, more sustainable spatial planning would reduce future flood damage to a much greater degree. [less ▲]

Detailed reference viewed: 107 (37 ULg)
See detailSea floor morphology of north-western Gulf of Corinth (Greece): combined impacts of Late Quaternary eustatism and active tectonics
Beckers, Arnaud ULg; Beck, Christian; Hubert, Aurelia ULg et al

Conference (2013, August 27)

Two high-resolution seismic reflection surveys (single channel sparker) were performed in the western part of the Gulf of Corinth. aboard HCMR’s R/V ALKYON, within the frame of SISCOR ANR Project. This ... [more ▼]

Two high-resolution seismic reflection surveys (single channel sparker) were performed in the western part of the Gulf of Corinth. aboard HCMR’s R/V ALKYON, within the frame of SISCOR ANR Project. This intra-continental marine basin is related to Late Cenozoic to Present extension separating “continental” Greece from Peloponnese. The connection of this active rift with the Ionian Sea (Mediterranean) is nowadays a 62 m deep sill, a situation which implies possible separations during low stands of global sea level, especially the last ones (MIS 2 and MIS 6). The western part of the Gulf, which is the most seismo-tectonically active part, appears as a transfer zone with both normal and strike slip faulting, identified through a dense grid of seismic lines. As a consequence, the offshore northern edge between the Mornos River delta and the Trizonia island shows a complex morphology due to the interaction between these structures, huge terrigenous feeding, deltaic development and sediment failures. Pre-Quaternary basement (Hellenids) was partly submitted to aerial erosion and paleodeltas are superimposed on the induced relief, visible at a depth of 110 m below Present sea level. The paleovalleys are filled with onlapping layered sediments, affected by several WSW-ENE and W-E oriented faults, part of them still active. An attempt to decipher both sources of relief genesis and evolution is presented. Beside, location and slip rate of active faults are discussed. [less ▲]

Detailed reference viewed: 31 (5 ULg)
Full Text
Peer Reviewed
See detailD'où viennent les Pies-grièches grises Lanius excubitor observées en migration et en hivernage en Wallonie ?
van der Elst, Denis; Beckers, Arnaud ULg

in Aves (2013), 50(2), 103-112

Detailed reference viewed: 12 (1 ULg)
See detailHigh energy environment offshore deposits in the western Gulf of Corinth, Greece
Beckers, Arnaud ULg; Mortier, Clément; Beck, Christian et al

Conference (2013, April)

Detailed reference viewed: 46 (13 ULg)
See detailSedimentation and active faulting in the western tip of the Gulf of Corinth, Greece
Beckers, Arnaud ULg; Bodeux, Sarah; Beck, Christian et al

Conference (2013, March 06)

The Gulf of Corinth is one of the fastest-spreading intracontinental rift on Earth, a 120km long E-W structure propagating westward toward the Aegean subduction zone. Present day kinematics (GPS data ... [more ▼]

The Gulf of Corinth is one of the fastest-spreading intracontinental rift on Earth, a 120km long E-W structure propagating westward toward the Aegean subduction zone. Present day kinematics (GPS data) indicates an opening direction oriented NNE-SSW and an opening rate increasing westward from 11 mm y-1 in the central part to 16 mm y-1 in the westernmost part. The high extension rate in the western part of the rift would imply a high seismic hazard if faults are not creeping. Our work concerns this western extremity of the Gulf of Corinth, for which we propose an accurate map of submarine faults as well as first chronostratigraphic interpretations. The map is based on two high-resolution seismic reflection surveys (single channel sparker) performed aboard HCMR’s R/V ALKYON, within the frame of SISCOR ANR Project. About 600 km of seismic lines were acquired, with a 200 msTWTT maximum penetration. We identified last glacial maximum (LGM) lowstand erosion surfaces along the northern coast. They made possible the mapping of post-LGM sediment thickness as well as estimates of subsidence rates. Depocenters location is controlled by river deltas where up to 75m of post-LGM sediments are stored. Numerous, up to 15m thick, mass transport deposits fill the central and eastern parts. Seafloor erosion is observed on 7.5 km2 in the western part, involving action of marine currents. The northern coast is subsiding between 1.7 and 2.2 mm y-1. We also mapped the following fault network described from east to west. In the eastern part, the sedimentary infill is faulted by the known North Eratini, South Eratini and West Channel faults. At the longitude of the Trizonia Island, the seafloor is mainly horizontal and the only fault is the south dipping Trizonia fault. Between the Trizonia Island and the Mornos Delta, the shallower northern part of the gulf shows a diffuse pattern of deformation with faults striking mainly E-W and ESE-WNW. In the southern part of the rift, no fault has been observed between the Psatopyrgos fault bounding the southern side of the Gulf and the Mornos Delta. To the West, between the Mornos Delta and the Rion Straits, three main south dipping, normal and oblique faults have been identified. This NE-SW striking fault system could be part of a local transfer zone linking the Patras and the Corinth Basins, or of the NE-SW right-lateral slip fault system interconnecting the Gulf of Corinth to the Kephalonia transform Fault and the Hellenic subduction. [less ▲]

Detailed reference viewed: 51 (7 ULg)
See detailEvolution du risque lié aux inondations de la Meuse : Influences relatives du climat et de la croissance des zones résidentielles
Beckers, Arnaud ULg; Detrembleur, Sylvain; Dewals, Benjamin ULg et al

Scientific conference (2013, February 28)

Chaque année, les inondations par débordement des rivières provoquent des dommages significatifs en Wallonie. L’ampleur de ceux-ci est liée à l’importance des crues elles-mêmes, mais aussi à l’occupation ... [more ▼]

Chaque année, les inondations par débordement des rivières provoquent des dommages significatifs en Wallonie. L’ampleur de ceux-ci est liée à l’importance des crues elles-mêmes, mais aussi à l’occupation du sol des terrains inondés. Dans le contexte des changements climatiques, comment évolueront les débits des crues « extrêmes » ? Quelle pourrait être l’influence de l’évolution de l’occupation du sol sur les dommages ? La vallée de la Meuse a été choisie pour investiguer et concrétiser les réponses à ces questions. Les dommages liés à une crue centennale ont été calculés pour la situation actuelle ainsi que pour différentes situations potentielles en 2100, suivant un scénario d’évolution climatique et neuf scénarios d’urbanisation de la Wallonie. L'accent sera mis sur tant sur le développement de ces scénarios que sur les conclusions robustes tirées des résultats obtenus en termes d’influence relative du climat et de l’occupation du sol sur les dommages futurs. [less ▲]

Detailed reference viewed: 85 (22 ULg)
Full Text
Peer Reviewed
See detailMorphometric age estimate of the last phase of accelerated uplift in the Kazdag area (Biga Peninsula, NW Turkey)
Demoulin, Alain ULg; Altin, T. Bayer; Beckers, Arnaud ULg

in Tectonophysics (2013), 608

While the Plio-Quaternary uplift of the Kazdag mountain range (Biga Peninsula, NW Turkey) is generally acknowledged, little is known about its detailed timing. Partly because of this lack of data, the ... [more ▼]

While the Plio-Quaternary uplift of the Kazdag mountain range (Biga Peninsula, NW Turkey) is generally acknowledged, little is known about its detailed timing. Partly because of this lack of data, the cause of this uplift phase is also debated, being associated either to back-arc extension in the rear of the Hellenic subduction zone, to transpression along the northern edge of the west-moving Anatolian microplate, or to extension driven by gravitational collapse. Here, we perform a morphometric study of the fluvial landscape at the scale of the Biga Peninsula, coupling the recently developed R/SR analysis of the drainage network with concavity and steepness measures of a set of 29 rivers of all sizes. While the dependence of profile concavity on basin size confirms that the landscape of the peninsula is still in a transient state, the spatial distribution of profile steepness values characterized by higher values for streams flowing down from the Kazdag massif shows that the latter undergoes higher uplift rates than the rest of the peninsula. We obtain a SR value of 0.324 ± 0.035 that, according to the relation established by Demoulin (2012), yields an age range of 0.5–1.3 Ma and a most probable value of 0.8 Ma for the time of the last tectonic perturbation in the region. In agreement with the analysis of knickpoint migration in a subset of rivers, this suggests that a pulse of uplift occurred at that time and, corroborated by sparse published observations in the Bayramiç and Çanakkale depressions, that the peninsula was uplifted as a whole from that time. This uplift pulse might have been caused by transient compressive conditions in the Anatolian plate when the Eratosthenes seamount came to subduct beneath the Cyprus arc around the early-to-mid Pleistocene transition (Schattner, 2010). [less ▲]

Detailed reference viewed: 8 (0 ULg)
See detailDeformation pattern at the western tip of the Corinth Rift
Beckers, Arnaud ULg; Hubert, Aurelia ULg; Beck, Christian et al

Conference (2012, September)

The Gulf of Corinth in Greece is an active continental rift propagating westward toward the Aegean subduction zone. GPS data shows that deformation rate reaches a maximum of 15 mm/yr at its western tip ... [more ▼]

The Gulf of Corinth in Greece is an active continental rift propagating westward toward the Aegean subduction zone. GPS data shows that deformation rate reaches a maximum of 15 mm/yr at its western tip. The style of extension and strain distribution is well documented offshore in the eastern and central parts of the rift (Bell, 2009). At its most active western extremity, published offshore data is not sufficient to characterize the deformation pattern. High resolution seismic profiles were thus acquired in that region within the framework of the SISCOR project to improve our understanding of fault evolution, seismicity and to be able to construct mechanical models of deformation. Here we investigate the spatio-temporal pattern of the basin subsidence and deposition with sparker data acquired in November 2011. Active faults and correlative time horizons were first mapped. The stratigraphy was then correlated with the eustatic sea-level curve. This sequence stratigraphic interpretation is possible because there are strong glacial-interglacial variations in the depositional environment. In fact lacustrine conditions prevail within the gulf during glacio-eustatic lowstands and are characterized by low amplitudes seismic facies. So synrift sediment isopachs over the last 12 000 and 130 000 yrs could be produced. The interpreted data allow us to: (1) compare deformation pattern at the western tip of the Gulf with the more mature central and eastern part of the Rift; (2) constrain the pattern and the timing of deformation as well as rates of faulting. Reference Bell, R. E., McNeill, L. C., Bull, J. M., Henstock, T. J., Collier, R. E. L., & Leeder, M. R., 2009. Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece. Basin Research, 21(6), 824-855. doi:10.1111/j.1365-2117.2009.00401.x [less ▲]

Detailed reference viewed: 36 (4 ULg)
Full Text
See detailRelative impacts of climate and landuse changes on future flood damage along River Meuse in Wallonia
Beckers, Arnaud ULg; Detrembleur, Sylvain ULg; Dewals, Benjamin ULg et al

Poster (2012, April 27)

Climate change is expected to increase flood hazard across most of Europe, both in terms of peak discharge intensity and frequency. Consequently, managing flood risk will remain an issue of primary ... [more ▼]

Climate change is expected to increase flood hazard across most of Europe, both in terms of peak discharge intensity and frequency. Consequently, managing flood risk will remain an issue of primary importance for decades to come. Flood risk depends on territories’ flood hazard and vulnerability. Beside climate change, land use evolution is thus a key influencing factor on flood risk. The aim of this research is to quantify the relative influence of climate and land use changes on flood damage evolution during the 21st century. The study focuses on River Meuse in Wallonia for a 100-year flood. A scenario-based approach was used to model land use evolution. Nine urbanization scenarios for 2100 were developed: three of them assume a “current tend” land use evolution, characterized by urban sprawl, while six others assume a sustainable spatial planning, leading to an increase in density of residential areas as well as an increase in urban functions diversity. A study commissioned by the EU has estimated a 30 % increase in the 100-year discharge for River Meuse by the year 2100. Inundation modeling was conducted for the present day 100-year flood (HQ100) and for a discharge HQ100 + 30%, using the model Wolf 2D and a 5m grid resolution Digital Elevation Model (Ernst et al. 2009). Based on five different damage curves related to land use categories, the relative damage was deduced from the computed inundation maps. Finally, specific prices were associated to each land use category and allowed assessing absolute damages, which were subsequently aggregated to obtain a damage value for each of the 19 municipalities crossed by River Meuse. Results show that flood damage is estimated to increase by 540 to 630 % between 2009 and 2100, reaching 2.1 to 2.4 billion Euros in 2100. These increases mainly involve municipalities downstream of a point where the floodplain width becomes significantly larger. The city of Liège, which is protected against a 100-year flood in the present situation, would undergo about 450 million Euros damage for a 100-year flood in the 2100, i.e. in-between 21% and 25 % of the whole damage increase. The influence of climate is three to eight times higher than the effect of land use change according to the land use evolution scenarios considered. Nevertheless, these two factors have a comparable influence on seven municipalities. Consequently, although a careful spatial planning would not considerably reduce the overall flood damage at the level of theWalloon part of the Meuse Valley, more sustainable spatial planning could efficiently reduce future flood damage at the level of several most critical municipalities. Reference Ernst, J, Dewals, B, Detrembleur, S, Archambeau, P, Erpicum, S, & Pirotton, M. (2010). Micro-scale flood risk analysis based on detailed 2D hydraulic modelling and high resolution geographic data. Natural Hazards, 55(2), 181-209. [less ▲]

Detailed reference viewed: 56 (16 ULg)
Full Text
See detailFactors of knickpoint migration on the moderately uplifted Ardennes Plateau, Western Europe
Beckers, Arnaud ULg; Bovy, Benoît ULg; Demoulin, Alain ULg

Poster (2012, April 27)

In the last two decades, much research has been devoted to the development and refinement of numerical models of river incision. In settings of prevailing bedrock channel erosion, numerous studies used ... [more ▼]

In the last two decades, much research has been devoted to the development and refinement of numerical models of river incision. In settings of prevailing bedrock channel erosion, numerous studies used field data, notably knickpoint data, to calibrate the widely acknowledged stream power model of incision and to discuss the specific impact of various variables (e.g., sediment load, channel width) not appearing explicitly in the model’s simplest form. However, most of these studies were conducted in areas of very active tectonics and high relief, thus displaying an exacerbated geomorphic response to the tectonic signal. Here, we analyze the traces left in the drainage network 0.7 My after the NE Ardennes region (western Europe) underwent a moderate 100-150 m uplift. We identify a set of knickpoints that have travelled far upstream in the Ourthe catchment. Because time becomes a more sensitive variable than distance near the headwaters, we fit the stream power model to the data by minimizing time residuals (i.e., the differences between 0.7 My and the modelled times for the knickpoints to reach their actual location) rather than distance residuals. Our best fit of the stream power model parameters yields m/n = 0.75 and K = 4.63 10-8 m-0.5y-1. We suggest that the discrepancy with the m/n value of 0.5 obtained from field and long profile data of the currently graded downstream part of the catchment’s streams points to a narrowing of the bedrock channel at the passage of a knickpoint. Then, the time residuals of the model fit are regressed against quantitative expressions of bedrock resistance to erosion and junction crossing, showing that both variables significantly affect knickpoint migration. In particular, most of the small tributaries with highly delayed knickpoints display all features characteristic of hanging valleys. However, not all such small streams have developed hanging valleys, and further research is needed to unravel how other controls, e.g., amount and size of the tributary bed load, are determining for the creation of such valleys. [less ▲]

Detailed reference viewed: 45 (12 ULg)
Full Text
Peer Reviewed
See detailOn different types of adjustment usable to calculate the parameters of the stream power law
Demoulin, Alain ULg; Beckers, Arnaud ULg; Bovy, Benoît ULg

in Geomorphology (2012), 138(1), 203-208

Model parameterization through adjustment to field data is a crucial step in the modeling and the understanding of the drainage network response to tectonic or climatic perturbations. Using as a test case ... [more ▼]

Model parameterization through adjustment to field data is a crucial step in the modeling and the understanding of the drainage network response to tectonic or climatic perturbations. Using as a test case a data set of 18 knickpoints that materialize the migration of a 0.7-Ma-old erosion wave in the Ourthe catchment of northern Ardennes (western Europe), we explore the impact of various data fitting on the calibration of the stream power model of river incision, from which a simple knickpoint celerity equation is derived. Our results show that statistical least squares adjustments (or misfit functions) based either on the streamwise distances between observed and modeled knickpoint positions at time t or on differences between observed and modeled time at the actual knickpoint locations yield significantly different values for the m and K parameters of the model. As there is no physical reason to prefer one of these approaches, an intermediate least-rectangles adjustment might at first glance appear as the best compromise. However, the statistics of the analysis of 200 sets of synthetic knickpoints generated in the Ourthe catchment indicate that the timebased adjustment is the most capable of getting close to the true parameter values. Moreover, this fitting method leads in all cases to an m value lower than that obtained from the classical distance adjustment (for example, 0.75 against 0.86 for the real case of the Ourthe catchment), corresponding to an increase in the non-linear character of the dependence of knickpoint celerity on discharge [less ▲]

Detailed reference viewed: 78 (13 ULg)
Full Text
Peer Reviewed
See detailValley downcutting in the Ardennes (W Europe): Interplay between tectonically triggered regressive erosion and climatic cyclicity
Demoulin, Alain ULg; Beckers, Arnaud ULg; Rixhon, Gilles ULg et al

in Netherlands Journal of Geosciences - Geologie en Mijnbouw (2012), 91(1-2), 79-90

Detailed reference viewed: 21 (7 ULg)