References of "Baudhuin, Ariane"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFast Homozygosity Mapping and Identification of a Zebrafish ENU-Induced Mutation by Whole-Genome Sequencing.
Voz, Marianne ULg; Coppieters, Wouter ULg; Manfroid, Isabelle ULg et al

in PLoS ONE (2012), 7(4), 34671

Forward genetics using zebrafish is a powerful tool for studying vertebrate development through large-scale mutagenesis. Nonetheless, the identification of the molecular lesion is still laborious and ... [more ▼]

Forward genetics using zebrafish is a powerful tool for studying vertebrate development through large-scale mutagenesis. Nonetheless, the identification of the molecular lesion is still laborious and involves time-consuming genetic mapping. Here, we show that high-throughput sequencing of the whole zebrafish genome can directly locate the interval carrying the causative mutation and at the same time pinpoint the molecular lesion. The feasibility of this approach was validated by sequencing the m1045 mutant line that displays a severe hypoplasia of the exocrine pancreas. We generated 13 Gb of sequence, equivalent to an eightfold genomic coverage, from a pool of 50 mutant embryos obtained from a map-cross between the AB mutant carrier and the WIK polymorphic strain. The chromosomal region carrying the causal mutation was localized based on its unique property to display high levels of homozygosity among sequence reads as it derives exclusively from the initial AB mutated allele. We developed an algorithm identifying such a region by calculating a homozygosity score along all chromosomes. This highlighted an 8-Mb window on chromosome 5 with a score close to 1 in the m1045 mutants. The sequence analysis of all genes within this interval revealed a nonsense mutation in the snapc4 gene. Knockdown experiments confirmed the assertion that snapc4 is the gene whose mutation leads to exocrine pancreas hypoplasia. In conclusion, this study constitutes a proof-of-concept that whole-genome sequencing is a fast and effective alternative to the classical positional cloning strategies in zebrafish. [less ▲]

Detailed reference viewed: 20 (7 ULg)
Full Text
Peer Reviewed
See detailEGF stimulates Pit-1 independent transcription of the human prolactin pituitary promoter in human breast cancer SK-BR-3 cells through its proximal AP-1 response element
Manfroid, Isabelle ULg; Van de Weerdt, Cécile ULg; Baudhuin, Ariane et al

in Molecular & Cellular Endocrinology (2005), 229(1-2), 127-39

Normal and neoplastic human mammary gland cells are targets for the proliferative action of prolactin. These cells also synthesize prolactin, thereby inducing an autocrine/paracrine proliferative loop. We ... [more ▼]

Normal and neoplastic human mammary gland cells are targets for the proliferative action of prolactin. These cells also synthesize prolactin, thereby inducing an autocrine/paracrine proliferative loop. We present the first extensive analysis of the transcriptional regulation of the human prolactin gene (hPRL) in human mammary tumor cells, SK-BR-3. We show that the pituitary promoter is functional in these cells in the absence of the pituitary-specific factor Pit-1. Expression of exogenous Pit-1 or epidermal growth factor (EGF) treatment stimulates the transfected hPRL pituitary promoter and the endogenous hPRL expression. EGF stimulation is mediated by increased synthesis of c-fos and c-jun, resulting in AP-1 binding to the proximal hPRL pituitary promoter. This regulation involves the EGF receptor, possibly ErbB2 that is highly expressed in SK-BR-3 cells, and a PI3K/JNK pathway. The stimulation of hPRL gene transcription by EGF in mammary cells may include hPRL in a complex regulatory network controlling growth of human mammary cells. [less ▲]

Detailed reference viewed: 16 (4 ULg)