References of "Batelaan, Okke"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe usefulness of outcrop-analogue air-permeameter measurements for analysing aquifer heterogeneity: testing outcrop hydrogeological parameters with independent borehole data
Rogiers, Bart; Beerten, Koen; Smeekens, Tom et al

in Hydrology & Earth System Sciences (2013), 17

Outcropping sediments can be used as easily accessible analogues for studying subsurface sediments, especially to determine the small-scale spatial variability of hydrogeological parameters. The use of ... [more ▼]

Outcropping sediments can be used as easily accessible analogues for studying subsurface sediments, especially to determine the small-scale spatial variability of hydrogeological parameters. The use of cost-effective in situvmeasurement techniques potentially makes the study of outcrop sediments even more attractive. We investigate to what degree air-permeameter measurements on outcrops of unconsolidated sediments can be a proxy for aquifer saturated hydraulic conductivity (K) heterogeneity. The Neogene aquifer in northern Belgium, known as a major groundwater resource, is used as the case study. K and grain-size data obtained from different outcropping sediments are compared with K and grain-size data from aquifer sediments obtained either via laboratory analyses on undisturbed borehole cores (K and grain size) or via large-scale pumping tests (K only). This comparison shows a pronounced and systematic difference between outcrop and aquifer sediments. Part of this difference is attributed to grain-size variations and earth surface processes specific to outcrop environments, including root growth, bioturbation, and weathering. Moreover, palaeoenvironmental conditions such as freezing–drying cycles and differential compaction histories will further alter the initial hydrogeological properties of the outcrop sediments. A linear correction is developed for rescaling the outcrop data to the subsurface data. The spatial structure pertaining to outcrops complements that obtained from the borehole cores in several cases. The higher spatial resolution of the outcrop measurements identifies small-scale spatial structures that remain undetected in the lower resolution borehole data. Insights in stratigraphic and K heterogeneity obtained from outcrop sediments improve developing conceptual models of groundwater flow and transport. [less ▲]

Detailed reference viewed: 31 (2 ULg)
Full Text
Peer Reviewed
See detailUsing multiple point geostatistics for tracer test modeling in a clay-drape environment with spatially variable conductivity and sorption coefficient
Huysmans, Marijke; Orban, Philippe ULg; Cochet, Elke et al

in Mathematical Geosciences (2013)

This study investigates the effect of fine-scale clay drapes on tracer transport. A tracer test was performed in a sandbar deposit consisting of cross-bedded sandy units intercalated with many fine-scale ... [more ▼]

This study investigates the effect of fine-scale clay drapes on tracer transport. A tracer test was performed in a sandbar deposit consisting of cross-bedded sandy units intercalated with many fine-scale clay drapes. The heterogeneous spatial distribution of the clay drapes causes a spatially variable hydraulic conductivity and sorption coefficient. A fluorescent tracer (sodium naphthionate) was injected in two injection wells and groundwater was sampled and analyzed from five pumping wells. To determine (1) whether the fine-scale clay drapes have a significant effect on the measured concentrations and (2) whether application of multiple-point geostatistics can improve interpretation of tracer tests in media with complex geological heterogeneity, this tracer test is analyzed with a local 3D groundwater flow and transport model in which fine-scale sedimentary heterogeneity is modeled using multiple-point geostatistics. To reduce memory needs and calculation time for the multiple-point geostatistical simulation step, this study uses the technique of "direct multiple-point geostatistical simulation of edge properties". Instead of simulating pixel values, model cell edge properties indicating the presence of irregularly-shaped surfaces are simulated using multiple point geostatistical simulations. Results of a sensitivity analysis show under which conditions clay drapes have a significant effect on the concentration distribution. Calibration of the model against measured concentrations from the tracer tests reduces the uncertainty on the clay drape parameters. The calibrated model shows which features of the breakthrough curves can be attributed to the geological heterogeneity of the aquifer and which features are caused by other processes. [less ▲]

Detailed reference viewed: 33 (7 ULg)
Full Text
See detailRegional urban groundwater body risk assessment of contaminants using remotely sensed multi-resolution land-cover data
Batelaan, Okke; Dujardin, Juliette; Jamin, Pierre ULg et al

Conference (2013, September 15)

Contaminated sites are often the result of past relatively anarchic economical and industrial development. The last decades stakeholders are more aware of the risks posed by these sites. Within the Frac ... [more ▼]

Contaminated sites are often the result of past relatively anarchic economical and industrial development. The last decades stakeholders are more aware of the risks posed by these sites. Within the Frac-Weco project an integrated framework for the assessment, at regional scale, of the risks posed by these contaminated sites on water resources and ecosystems has been developed. The methodology is based on the calculation of contaminant fluxes reaching the receptors providing a way of estimating the level of exposure/degradation of these receptors at the groundwater body scale. The most important contamination problems at regional scale are located around old urban and industrialized areas. The land-cover distribution in these zones is of prime importance because it determines the spatial variation of groundwater recharge, which is the main vector of contaminant leaching from soil surface to groundwater. To obtain detailed information about land cover for groundwater recharge modeling, a stratified satellite image classification approach was adopted combining land-cover mapping at pixel level for the studied area as a whole with sub-pixel estimation of imperviousness within built-up zones. The obtained land-cover data is used as an input in the WetSpass model to simulate groundwater recharge at high resolution in spatially complex urban areas. In the next step the simulated groundwater recharge is used as an input in a regional scale groundwater flow and transport model simulating contaminant dispersion through the aquifer. Modeling results are further used to calculate a quality index for the whole groundwater body based on threshold values defined specifically for each contaminant. The approach proposed has been applied on the RWM073 groundwater body corresponding to the alluvial deposits of the Meuse River, Liège (Belgium). The high-resolution groundwater recharge estimations obtained by integrating remote sensing in the modeling procedure allow a better identification of the potential sources of contaminants and enable a proper quantification of total fluxes of contaminants from brownfields into the groundwater. The developed framework for regional risk assessment results in a global quality indicator for the groundwater body which can be used as input for decision-making. [less ▲]

Detailed reference viewed: 12 (2 ULg)
Full Text
See detailOpal-CT precipitation in a clayey soil explained by geochemical transport model of dissolved Si (Blégny, Belgium)
Ronchi, Benedicta; Barao, A.L.; Vandevenne, F. et al

Poster (2013, August 25)

Opal-CT precipitation controlling dissolved Si export Dissolved Si (DSi) exported by rivers are controlled by geological, hydrological and biological cycle processes [1]. The DSi concentrations measured ... [more ▼]

Opal-CT precipitation controlling dissolved Si export Dissolved Si (DSi) exported by rivers are controlled by geological, hydrological and biological cycle processes [1]. The DSi concentrations measured in a river of an upstream catchment in eastern Belgium (Blégny, Land of Herve) don’t vary seasonally (6.91±0.94mgL-1; n=363). Si concentrations in pore water are often higher and vary more (8.65±3.65mgL-1; n=128). The decrease of DSi along the flowpath of water is due to sink processes, i.e. precipitation, adsorption or uptake by vegetation. As the DSi in the river does not show any seasonal variation, uptake by vegetation can be ruled out [1] whereas precipitation or adsorption can control the DSi drained by the stream water. This hypothesis is confirmed by XRD and DeMaster analysis. At 0.1m depth the soil is constituted of 62% quartz, 7% K-feldspar, 6% plagioclase, 3.2% carbonates, 18.9% Al-clay, 1.47% Kaolinite, 0.63% Chlorite and 0.2% amorphous Si, probably of biogenic origin. At 1.5m depth, the amounts of several minerals (35.8% quartz, 0.6% K-feldspars, 0.9% plagioclase, Al-clay 14.7%) drop drastically. Carbonates, chlorite and kaolinite are absent whereas 40.4% opal-CT appears. The precipitation of opal-CT controls the DSi export of this catchment. Development of geochemical transport model To descripe DSi export from a catchment a geochemical transport model is developped in HP1 which couples the water flux model Hydrus with the geochemical model PHREEQC [2]. Our model is based on the conceptual model developped in [3]. First results show different DSi export dynamics in the unsaturated zone than in the aquifer due to different pCO2 values and varying soil moisture conditions. Further development of the model will help to find out the reason of opal-CT precipitation in this setting. [1]Fulweiler, Nixon (2005) Biogeochemistry 74:115–130. [2] Simunek, Jacques, van Genuchten, Mallants (2006) JAWRA 42:1537-1547. [3] Ronchi et al. (2013). Silicon, 5(1), 115–133. [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
Peer Reviewed
See detailThe usefulness of outcrop analogue air permeameter measurements for analyzing aquifer heterogeneity: quantifying outcrop hydraulic conductivity and its spatial variability
Rogiers, Bart; Beerten, Koen; Smeekens, Tuur et al

in Hydrological Processes (2013)

Saturated hydraulic conductivity (K) is one of the most important parameters determining groundwater flow and contaminant transport in both unsaturated and saturated porous media. Although several well ... [more ▼]

Saturated hydraulic conductivity (K) is one of the most important parameters determining groundwater flow and contaminant transport in both unsaturated and saturated porous media. Although several well-established laboratory methods exist for determining K, in situ measurements of this parameter remain very complex and scale dependent. Often, the limited accessibility of subsurface sediments for sampling means an additional impediment to our ability to quantify subsurface K heterogeneity. One potential solution is the use of outcrops as analogues for subsurface sediments. This paper investigates the use of air permeameter measurements on outcrops of unconsolidated sediments to quantify K and its spatial heterogeneity on a broad range of sediment types. The Neogene aquifer in northern Belgium is used as a case study for this purpose. To characterize the variability in K, 511 small-scale air permeability measurements were performed on outcrop sediments representative over five of the aquifer’s lithostratigraphic units. From these measurements, outcrop-scale equivalent K tensors were calculated using numerical upscaling techniques. Validation of the air permeameter-based K values by comparison with laboratory constant head K measurements reveals a correlation of 0.93. Overall, the results indicate that hand-held air permeameters are very efficient and accurate tools to characterize saturated K, as well as its small-scale variability and anisotropy on a broad range of unconsolidated sediments. The studied outcrops further provided a qualitative understanding of aquifer hydrostratigraphy and quantitative estimates about K variability at the centimetre-scale to metre-scale. [less ▲]

Detailed reference viewed: 20 (3 ULg)
Full Text
Peer Reviewed
See detailMulti-scale aquifer characterization and groundwater flow model parameterization using direct push technologies
Rogiers, Bart; Vienken, T; Batelaan, Okke et al

in Novel Methods for Subsurface Characterization and Monitoring: From Theory to Practice (2013, May)

Groundwater flow and contaminant transport models are used to support decision making regarding waste disposal options, sites contaminated by surface or subsurface sources, or to develop and test cost ... [more ▼]

Groundwater flow and contaminant transport models are used to support decision making regarding waste disposal options, sites contaminated by surface or subsurface sources, or to develop and test cost-effective groundwater remediation schemes. Such models are influenced by different sources of uncertainty, including those due to spatial variability in aquifer and aquitard properties including hydraulic conductivity (K). However, quantifying spatial variability in K remains challenging. Classical drilling techniques for shallow heterogeneous unconsolidated sedimentary deposits involving continuous coring are expensive and time-consuming, especially when the area of interest exceeds several tens of km². Alternative techniques such as direct push technologies use hydraulic rams, supplemented with vehicle weight, or high-frequency hammering, to advance small-diameter tools into the subsurface. These tools are typically used for cost-effective geotechnical characterization of unconsolidated deposits; recent developments also allow for hydraulic characterization. The depth of investigation is up to ~40 m, depending on the tools used (i.e applied load) and sediment properties (friction). Up to now, only a limited number of studies document using this type of data to parameterize regional groundwater flow models. To fill this gap, this study aims at parameterizing a regional groundwater flow model using data from various types of direct push technologies. We discuss the characterization of an area (~60 km²) near the nuclear zone of Mol/Dessel (Belgium), using various direct push technologies. Most of the measurements are concentrated in an area of 200×400 m². The data include 265 cone penetration tests (CPTs), 113 pore pressure dissipation tests (PPDTs), 17 direct push injection logs (DPIL), 6 hydraulic profiling tool (HPT) logs and 19 direct push slug tests (DPST). Resulting K values, either calculated or estimated, and the corresponding spatial variability are compared with that of borehole and outcrop studies. The benefit of using standard CPT data for the parameterization of an aquitard at the study site has previously been shown. The approach is now applied to the aquifer units and incorporates new direct push data for the entire upper ~40 m of the hydrogeological domain. The effect of the 3D heterogeneous hydraulic conductivity field on the performance of the groundwater flow model is discussed; the value of the different direct push technologies is equally addressed. [less ▲]

Detailed reference viewed: 20 (2 ULg)
Full Text
Peer Reviewed
See detailDerivation of flow and transport parameters from outcropping sediments of the Neogene aquifer, Belgium
Rogiers, Bart; Beerten, K.; Smeekens, T. et al

in Geologica Belgica (2013), 16(3), 129-147

Centimetre-scale saturated hydraulic conductivities (K) are derived from air permeability measurements on a selection of outcrops of the Neogene aquifer in the Campine area, Belgium. Outcrop sediments are ... [more ▼]

Centimetre-scale saturated hydraulic conductivities (K) are derived from air permeability measurements on a selection of outcrops of the Neogene aquifer in the Campine area, Belgium. Outcrop sediments are of Miocene to Quaternary age and have a marine to continental origin. Grain size analyses for the same outcrops and corresponding K predictions using previously developed models are also presented. We discuss outcrop hydrogeological properties and quantify the heterogeneity within the outcrops in detail using geostatistical variography. Moreover, outcrop-scale K values, their anisotropy and dispersivities are numerically calculated as a means to upscale such small-scale measurements to a larger scale commensurate with the scale of flow and transport modelling. By studying the small-scale variability as observed in outcrops, we gain crucial understanding of the larger-scale behaviour of the corresponding hydrogeological units within the Neogene aquifer, the most important groundwater reservoir of Flanders. The results of this study will equally improve conceptual hydrogeological model building and parameterization. [less ▲]

Detailed reference viewed: 34 (1 ULg)
Full Text
Peer Reviewed
See detailAssessing urbanisation effects on rainfall-runoff using a remote sensing supported modelling strategy
Verbeiren, Boud; Van de Voorde, Tim; Canters, Frank et al

in International Journal of Applied Earth Observation and Geoinformation (2013), 21

This paper aims at developing a methodology for assessing urban dynamics in urban catchments and the related impact on hydrology. Using a multi-temporal remote sensing supported hydrological modelling ... [more ▼]

This paper aims at developing a methodology for assessing urban dynamics in urban catchments and the related impact on hydrology. Using a multi-temporal remote sensing supported hydrological modelling approach an improved simulation of runoff for urban areas is targeted. A time-series of five medium resolution urban masks and corresponding sub-pixel sealed surface proportions maps was generated from Landsat and SPOT imagery. The consistency of the urban mask and sealed surface proportion timeseries was imposed through an urban change trajectory analysis. The physically based rainfall-runoff model WetSpa was successfully adapted for integration of remote sensing derived information of detailed urban land use and sealed surface characteristics. A first scenario compares the original land-use class based approach for hydrological parameterisation with a remote sensing sub-pixel based approach. A second scenario assesses the impact of urban growth on hydrology. Study area is the Tolka River basin in Dublin, Ireland. The grid-based approach of WetSpa enables an optimal use of the spatially distributed properties of remote sensing derived input. Though change trajectory analysis remains little used in urban studies it is shown to be of utmost importance in case of time series analysis. The analysis enabled to assign a rational trajectory to 99% of all pixels. The study showed that consistent remote sensing derived land-use maps are preferred over alternative sources (such as CORINE) to avoid over-estimation errors, interpretation inconsistencies and assure enough spatial detail for urban studies. Scenario 1 reveals that both the class and remote sensing sub-pixel based approaches are able to simulate discharges at the catchment outlet in an equally satisfactory way, but the sub-pixel approach yields considerably higher peak discharges. The result confirms the importance of detailed information on the sealed surface proportion for hydrological simulations in urbanised catchments. In addition a major advantage with respect to hydrological parameterisation using remote sensing is the fact that it is site- and period-specific. Regarding the assessment of the impact of urbanisation (scenario 2) the hydrological simulations revealed that the steady urban growth in the Tolka basin between 1988 and 2006 had a considerable impact on peak discharges. Additionally, the hydrological response is quicker as a result of urbanisation. Spatially distributed surface runoff maps identify the zones with high runoff production. It is evident that this type of information is important for urban water management and decision makers. The results of the remote sensing supported modelling approach do not only indicate increased volumes due to urbanisation, but also identifies the locations where the most relevant impacts took place. [less ▲]

Detailed reference viewed: 51 (10 ULg)
Full Text
Peer Reviewed
See detailThe usefulness of CPTs for deterministic, spatially heterogeneous, large-scale aquitard parametrisation
Rogiers, Bart; Mallants, Dirk; Batelaan, Okke et al

in Oswald, S.E.; Kolditz, O.; Attinger, S. (Eds.) Models - Repositories of Knowledge (2012, December)

Aquitards can be effectively parameterised and incorporated in a groundwater flow model by using standard cone penetration tests (CPTs). Several conceptually different realizations of an aquitard’s ... [more ▼]

Aquitards can be effectively parameterised and incorporated in a groundwater flow model by using standard cone penetration tests (CPTs). Several conceptually different realizations of an aquitard’s hydraulic conductivity field were evaluated based on: (i) conventional methods of soil behaviour type classification, (ii) recent relationships from the literature, and (iii) novel site-specific relations with hydraulic conductivity. We show that use of most of these CPT-based hydraulic conductivity estimations in groundwater flow modelling effectively enhance model performance based on absolute head values and gradients across the aquitard. Conceptual models that considered a spatially heterogeneous hydraulic conductivity for the aquitard performed better than the reference case with a uniform aquitard hydraulic conductivity. However, the hydraulic conductivity of thin heavy clay lenses, characteristic of the aquitard present in our study area, cannot be captured using these continuum approaches. The latter leads to a bias in the direct hydraulic conductivity predictions; an alternative is to invoke inverse modelling with the heterogeneous parameter fields. To address this issue, the concept of the boundary energy associated with the CPT signal is also introduced for characterising the presence of heavy clay lenses. Overall, the CPT-based concepts provide more accurate, robust, and high-resolution data-based parameterisation of the studied aquitard. [less ▲]

Detailed reference viewed: 35 (8 ULg)
Full Text
Peer Reviewed
See detailEstimation of hydraulic conductivity and its uncertainty from grain-size data using GLUE and artificial neural networks
Rogiers, Bart; Mallants, Dirk; Batelaan, Okke et al

in Mathematical Geosciences (2012), 44(6), 739-763

Various approaches exist to relate saturated hydraulic conductivity (Ks) to grain-size data. Most methods use a single grain-size parameter and hence omit the information encompassed by the entire grain ... [more ▼]

Various approaches exist to relate saturated hydraulic conductivity (Ks) to grain-size data. Most methods use a single grain-size parameter and hence omit the information encompassed by the entire grain-size distribution. This study compares two data-driven modelling methods, i.e.multiple linear regression and artificial neural networks, that use the entire grain-size distribution data as input for Ks prediction. Besides the predictive capacity of the methods, the uncertainty associated with the model predictions is also evaluated, since such information is important for stochastic groundwater flow and contaminant transport modelling. Artificial neural networks (ANNs) are combined with a generalized likelihood uncertainty estimation (GLUE) approach to predict Ks from grain-size data. The resulting GLUE-ANN hydraulic conductivity predictions and associated uncertainty estimates are compared with those obtained from the multiple linear regression models by a leave-one-out cross-validation. The GLUE-ANN ensemble prediction proved to be slightly better than multiple linear regression. The prediction uncertainty, however, was reduced by half an order of magnitude on average, and decreased at most by an order of magnitude. This demonstrates that the proposed method outperforms classical data-driven modelling techniques. Moreover, a comparison with methods from literature demonstrates the importance of site specific calibration. The dataset used for this purpose originates mainly from unconsolidated sandy sediments of the Neogene aquifer, northern Belgium. The proposed predictive models are developed for 173 grain-size -Ks pairs. Finally, an application with the optimized models is presented for a borehole lacking Ks data. [less ▲]

Detailed reference viewed: 45 (5 ULg)
Full Text
See detailAir permeametry on outcrop analogues: a composite image of the Neogene aquifer, Belgium
Rogiers, Bart; Beerten, K.; Smekens, T. et al

in Geophysical Research Abstracts, Vol. 14, EGU2012-1788-1 (2012, May)

Saturated hydraulic conductivity (Ks) is one of the most important parameters determining groundwater flow and contaminant transport in both unsaturated and saturated porous media. While several well ... [more ▼]

Saturated hydraulic conductivity (Ks) is one of the most important parameters determining groundwater flow and contaminant transport in both unsaturated and saturated porous media. While several well-established laboratory methods exist for determining Ks, in-situ measurements of this parameter remain very complex. Since the 50’s, and increasingly from the late 80’s, air permeameters are being used effectively as an indirect method to determine Ks on outcrop sediments. In this paper, the heterogeneity within outcrop sediments that are analogues for the Neogene aquifer hydrostratigraphic units in northern Belgium is studied with a hand-held air permeameter. This aquifer, representing a major groundwater source, consists of several sandy geological units from Miocene to Pleistocene age with a marine to continental origin. Moreover, it plays an important role in the Belgian deep geological radwaste disposal studies, and is the subject of a safety assessment for a future low-level radwaste surface repository. To characterise the variability between and within the different lithostratigraphical aquifer units, 804 air permeability measurements at cm-scale were performed on several outcrops that are analogues for the sandy aquifer sediments and a highly heterogeneous aquitard. Equivalent meter-scale Ks tensors were calculated numerically through the law of flow conservation to obtain the vertical anisotropy factor. The off-diagonal tensor components were shown to be negligible. To validate the air permeametry data, 18 additional constant head permeameter tests on 100 cm3 cores and 27 grain size analyses based Ks assessments were performed on outcrop material. The comparison indicates that hand-held air permeameters are very effective and useful tools to characterise the magnitude of hydraulic conductivity, as well as it’s small-scale variability and anisotropy, on a broad range of sediment types. However, a comparison with data from a previous borehole campaign on similar though not identical aquifer sediments reveals that the Ks values predicted at the outcrops are systematically higher by at least a factor of 10 than the corresponding Ks distributions determined from the borehole cores. One explanation is the weathering state of several-cm thick clay lenses, i.e. much less weathered in the aquitard than in the analogous outcrop with correspondingly lower conductivities for the aquitard. This shows that transferring outcrop data to the subsurface should be done with care because of different degrees of compaction, weathering states, etc. [less ▲]

Detailed reference viewed: 1 (0 ULg)
Full Text
See detailCentimeter-scale secondary information on hydraulic conductivity using a hand-held air permeameter on borehole cores
Rogiers, Bart; Winters, P.; Huysmans, Marijke et al

in Geophysical Research Abstracts, Vol. 14, EGU2012-1794-1 (2012, May)

Saturated hydraulic conductivity (Ks) is one of the most important parameters determining groundwater flow and contaminant transport in both unsaturated and saturated porous media. Determining the small ... [more ▼]

Saturated hydraulic conductivity (Ks) is one of the most important parameters determining groundwater flow and contaminant transport in both unsaturated and saturated porous media. Determining the small-scale variability of this parameter is key to evaluate implications on effective parameters at the larger scale. Moreover, for stochastic simulations of groundwater flow and contaminant transport, accurate models on the spatial variability of Ks are very much needed. While several well-established laboratory methods exist for determining Ks, investigating the small-scale variability remains a challenge. If several tens to hundreds of metres of borehole core has to be hydraulically characterised at the centimetre to decimetre scale, several hundreds to thousands of Ks measurements are required, which makes it very costly and time-consuming should traditional methods be used. With reliable air permeameters becoming increasingly available from the late 80’s, a fast and effective indirect method exists to determine Ks. Therefore, the use of hand-held air permeameter measurements for determining very accurate small-scale heterogeneity about Ks is very appealing. Very little is known, however, on its applicability for borehole cores that typically carry a small sediment volume. Therefore, the method was tested on several borehole cores of different size, originating from the Campine basin, Northern Belgium. The studied sediments are of Miocene to Pleistocene age, with a marine to continental origin, and consist of sand to clayey sand with distinct clay lenses, resulting in a Ks range of 7 orders of magnitude. During previous studies, two samples were taken from borehole cores each two meters for performing constant head lab permeameter tests. This data is now used as a reference for the air permeameter measurements that are performed with a resolution of 5 centimetres. Preliminary results indicate a very good correlation between the previously gathered constant head Ks data and the air permeability measurements, but a systematic bias seems to exist. A geostatistical analysis with cross-validation is performed to assess the predictive uncertainty on Ks, using both types of data. We conclude that performing hand-held air permeameter measurements on undisturbed borehole cores provides a very cost-effective way to obtain very detailed information in the framework of stochastic simulation and conditioning of heterogeneous hydraulic conductivity fields. [less ▲]

Detailed reference viewed: 3 (0 ULg)
Full Text
Peer Reviewed
See detailRelationship between sedimentary features and permeability at different scales in the Brussels Sands
Possemiers, Mathias; Huysmans, Marijke; Peeters, Luk et al

in Geologica Belgica (2012), 15(3), 156-164

The Brussels Sands display a complex three-dimensional subsurface architecture. This sedimentological heterogeneity induces a highly heterogeneous spatial distribution of hydrogeological parameters at ... [more ▼]

The Brussels Sands display a complex three-dimensional subsurface architecture. This sedimentological heterogeneity induces a highly heterogeneous spatial distribution of hydrogeological parameters at different scales and may consequently influence subsurface fluid flow and solute migration. This study aims at characterizing spatial variability of permeability at different scales in the Brussels Sands. Firstly, a literature review on the permeability distribution of the Brussels Sands was performed. Secondly, a field campaign was carried out consisting of field observations of the small-scale sedimentary structures and in situ measurements of air permeability. A total of 6550 cm-scale air permeability measurements were carried out in situ in three Brussels Sands quarries in the central part of Belgium: Bierbeek, Mont Saint Guibert and Chaumont Gistoux. On the large basin scale, substantial differences in permeability are observed. A literature data analysis shows that there is no clear correlation between hydraulic conductivity and sedimentary facies. At the small scale, results show that permeability heterogeneity and anisotropy are strongly influenced by sedimentary heterogeneity in all three quarries. Clay-rich sedimentary features such as bottomsets and distinct mud drapes exhibit a different statistical and geostatistical permeability distribution compared to the cross-bedded lithofacies, where the permeability anisotropy is dominated by the foreset lamination orientation. [less ▲]

Detailed reference viewed: 74 (6 ULg)
Full Text
See detailFlux-based Risk Assessement of the impact of Contaminants on Water resources and ECOsystems
Jamin, Pierre ULg; Dujardin, Juliette; Crèvecoeur, Sophie et al

Report (2012)

Detailed reference viewed: 29 (7 ULg)
See detailFlux-based risk assessment of the impact of contamnants on water ressources and ecosystems - FRAC-WECO.
Jamin, Pierre ULg; Dujardin, J.; Crévecoeur, Sophie et al

Report (2012)

Detailed reference viewed: 38 (5 ULg)
Full Text
See detailSite-specific soil classification from cone penetration tests and borehole data: a multivariate statistical analysis
Rogiers, Bart; Mallants, Dirk; Batelaan, Okke et al

in NovCare 2011 edition:2 (2011, May 11)

Groundwater flow and contaminant transport models are influenced by different kinds of uncertainty, including spatial variability in aquifer and aquitard properties. Appropriate models are developed to ... [more ▼]

Groundwater flow and contaminant transport models are influenced by different kinds of uncertainty, including spatial variability in aquifer and aquitard properties. Appropriate models are developed to support decision making related to environmental impact assessment for waste disposal sites or to develop cost-effective groundwater remediation. These modelling tools are required to incorporate spatial variability as observed at different scales. Several studies have investigated correlations between geotechnical data, e.g. cone penetration tests (CPT) results, and hydrogeological parameters such as hydraulic conductivity (K). However, very few studies have used geotechnical data in groundwater flow models, although gathering of such information is usually much easier and cheaper compared to expensive drilling and pumping test campaigns. It is however generally known that CPT soil behaviour type (SBT) classifications are only indicative, and parameters attributed to these SBTs should therefore be treated with caution. Moreover, since most parameters of interest in groundwater flow modeling do not share a one-to-one relationship with the standard CPT parameters, the assessment of the uncertainty related to this relationship is of great importance in stochastic modeling. Since a unique data set is available for the nuclear zone of Mol/Dessel (Belgium) different approaches to describe the spatial variability in flow and transport parameters can be tested. A detailed hydrogeological characterization reaching depths of 40 to 50 m (including Quaternary and Neogene formations) has been carried out in 2008-2009 coordinated by ONDRAF/NIRAS (Belgian Agency for Radioactive Waste and Enriched Fissile Materials) in the frame of a surface disposal project for low and intermediate short-lived radioactive waste. A large amount of quantitative and semi-quantitative information has been collected in an area of 60 km², including borehole logs, more than 200 CPTs, and roughly 340 K measurements on undisturbed cores. This study uses exploratory cluster analysis to classify this multivariate dataset into different groups. This is achieved with k-means clustering, minimizing the within-group variance. The resulting classes are then interpreted with respect to the site-specific lithotypes using factor analysis. Next, a simplified classification is derived, as it is not possible to distinguish between some groups solely based on CPT data. The resulting classification is compared with literature SBT classifications in relation to the mean and variance of groundwater flow and physical/chemical parameters within each class. Both classifications are also compared in their ability to identify the local litho- and hydro-stratigraphy. Hydraulic conductivity values derived from pore pressure dissipation tests are compared with estimations obtained from SBT classifications. A final discussion is devoted to the integral scales of the corresponding indicator fields of soil classes and how these differ between the different classification schemes. [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
Peer Reviewed
See detailApplication of a multi-model approach to account for conceptual model and scenario uncertainties in groundwater modelling
Rojas, Rodriguo; Kahunde, Samalie; Peeters, Luk et al

in Journal of Hydrology (2010), 394(3-4), 416-435

Groundwater models are often used to predict the future behaviour of groundwater systems. These models may vary in complexity from simplified system conceptualizations to more intricate versions. It has ... [more ▼]

Groundwater models are often used to predict the future behaviour of groundwater systems. These models may vary in complexity from simplified system conceptualizations to more intricate versions. It has been recently suggested that uncertainties in model predictions are largely dominated by uncertainties arising from the definition of alternative conceptual models. Different external factors such as climatic conditions or groundwater abstraction policies, on the other hand, may also play an important role. Rojas et al. (2008) proposed a multimodel approach to account for predictive uncertainty arising from forcing data (inputs), parameters and alternative conceptualizations. In this work we extend upon this approach to include uncertainties arising from the definition of alternative future scenarios and we apply the extended methodology to a real aquifer system underlying the Walenbos Nature Reserve area in Belgium. Three alternative conceptual models comprising different levels of geological knowledge are considered. Additionally, three recharge settings (scenarios) are proposed to evaluate recharge uncertainties. A joint estimation of the predictive uncertainty including parameter, conceptual model and scenario uncertainties is estimated for groundwater budget terms. Finally, results obtained using the improved approach are compared with the results obtained from methodologies that include a calibration step and which use a model selection criterion to discriminate between alternative conceptualizations. Results showed that conceptual model and scenario uncertainties significantly contribute to the predictive variance for some budget terms. Besides, conceptual model uncertainties played an important role even for the case when a model was preferred over the others. Predictive distributions showed to be considerably different in shape, central moment and spread among alternative conceptualizations and scenarios analysed. This reaffirms the idea that relying on a single conceptual model driven by a particular scenario, will likely produce bias and under-dispersive estimations of the predictive uncertainty. Multimodel methodologies based on the use of model selection criteria produced ambiguous results. In the frame of a multimodel approach, these inconsistencies are critical and can not be neglected. These results strongly advocate the idea of addressing conceptual model uncertainty in groundwater modelling practice. Additionally, considering alternative future recharge uncertainties will permit to obtain more realistic and, possibly, more reliable estimations of the predictive uncertainty. [less ▲]

Detailed reference viewed: 56 (9 ULg)
Full Text
See detailCaractérisation de l'hétérogénéité de la conductivité hydraulique à saturation au moyen d'essais de pénétration au cône
Rogiers, Bart; Mallants, Dirk; Batelaan, Okke et al

in Bulletin du GFHN n°56 (2010, November)

Dans le cadre du stockage des déchets radioactifs à activité faible et intermédiaire dans une installation de proche surface à Dessel, une caractérisation du site et de ses alentours a été réalisée ces ... [more ▼]

Dans le cadre du stockage des déchets radioactifs à activité faible et intermédiaire dans une installation de proche surface à Dessel, une caractérisation du site et de ses alentours a été réalisée ces dernières années. Les données recueillies contiennent à ce jour 388 mesures de conductivité hydraulique à saturation collectées sur 8 sites de sondage. En outre, des informations secondaires comme la granulométrie, la résistivité électrique, et la porosité ont été recueillies. Pour extrapoler ces informations à toute la région (70 km²), et bâtir un modèle hydrogéologique, plusieurs campagnes géotechniques ont été réalisées avec un total d'environ 260 essais de pénétration au cône. Avec cet ensemble de données, une approche probabiliste à petite échelle peut être utilisée 1) pour valider les modèles déterministes basée sur des paramètres moyens à grande échelle, et 2) pour aider à développer un réseau de surveillance. Parce que les essais de pénétration au cône délivrent une large information sur la variabilité spatiale du sous-sol, ils sont étudiés en détail. Une approche empirique est utilisée pour estimer la conductivité hydraulique à saturation à partir des paramètres des essais de pénétration au cône. En raison de la complexité de la relation entre la conductivité hydraulique à saturation et les variables mesurées sur le terrain, les modèles de régression ne sont pas satisfaisants pour le site investigué. De plus, le nombre de données est insuffisant pour appliquer des méthodes plus complexes comme par exemple les réseaux de neurones artificiels. Par analogie avec les méthodes classique de la classification du sous-sol en fonction des essais de pénétration au cône, une interpolation des données est faite dans le plan de la résistance du cône et le ratio de ce dernier avec la résistance au frottement latéral. Ainsi, une table de conversion est construite pour coupler les paramètres géotechniques à la conductivité hydraulique à saturation. Pour valider la méthode utilisée, les résultats sont comparés avec d'autres informations du sous-sol comme les carottes des sondages et avec des estimations de la conductivité hydraulique à saturation déduites d’analyses granulométriques. Finalement, une réalisation conditionnelle géostatistique de la conductivité hydraulique saturée d'un volume à trois dimensions de 400x175x40 m est proposée, et permet de se rendre compte de l’existence de 2 unités hydrogéologiques contrastées avec de différents modèles structurels. [less ▲]

Detailed reference viewed: 29 (9 ULg)
Full Text
See detailGroundwater model parameter identification using a combination of cone-penetration tests and borehole data
Rogiers, Bart; Schiltz, Marco; Beerten, Koen et al

in International Groundwater Symposium 2010, IAHR (2010, September)

In the framework of the disposal of short-lived low- and intermediate-level radioactive waste in a near-surface disposal facility in Dessel, Belgium, additional extensive site characterisation has been ... [more ▼]

In the framework of the disposal of short-lived low- and intermediate-level radioactive waste in a near-surface disposal facility in Dessel, Belgium, additional extensive site characterisation has been performed in 2008. The gathered data now include 388 hydraulic conductivity measurements on samples from 8 cored boreholes. Detailed characterisation of these cored boreholes, together with geophysical logging, enabled to identify various hydrostratigraphical units at 8 discrete locations in the research area. Various analyses were performed on the cores, yielding information on grain size, mineralogy, density and total porosity. Geophysical logging parameters were derived from gamma-ray and resistivity measurements. Subsequently, an extensive geotechnical logging campaign was performed in order to establish a 3D-model of the hydrostratigraphical units, based on a dense network of investigation points. About 180 cone penetration tests (CPTs) were executed and lithology was deduced in detail based on existing soil classi cation charts. As such, a description of the regional subsurface up to depths of nearly 50 m was established, and this information was integrated with the borehole data. Most importantly, the lateral extent, depth and thickness of a hydrogeologically important aquitard was identi fied. Based on the 2008 site characterisation results and their interpretation, an update of a ground- water fl ow model used in safety assessments was made. The CPT-based stratigraphic model and the hydraulic conductivity data determined at different scales were combined into a new 3D hydrostratigraphical model. The small-scale measurements (on 100 cm³ core samples) are compared with hydraulic conductivity values obtained from pumping tests and the large-scale parameters derived by inverse modelling. The performance of the original and the updated flow model are compared. The presented approach was succesfull in substantially decreasing the conceptual model and parameter uncertainty and resulted in an improved calibration of the groundwater flow model. [less ▲]

Detailed reference viewed: 106 (16 ULg)
Full Text
See detailGeostatistical analysis of primary and secondary data in a sandy aquifer at Mol/Dessel (Belgium)
Rogiers, Bart; Mallants, Dirk; Batelaan, Okke et al

in Cokx, L.; Van Meirvenne, M.; Bogaert, P. (Eds.) et al 8th International Conference on Geostatistics for Environmental Applications (GeoENV2010) (2010, September)

In the framework of the disposal of short-lived low- and intermediate-level radioactive waste in a near-surface disposal facility in Dessel, Belgium, additional extensive site characterization has been ... [more ▼]

In the framework of the disposal of short-lived low- and intermediate-level radioactive waste in a near-surface disposal facility in Dessel, Belgium, additional extensive site characterization has been performed in 2008. The gathered data now enclose 388 hydraulic conductivity measurements on samples of 8 cored boreholes. Secondary information as grain size analysis, porosity, and borehole geophysical parameters was also gathered. In addition, the geology of the study area has also been thoroughly characterized by a set of 178 cone penetration tests (CPTs) to approximate 50 m depth. This dataset allowed to refine the hydrostratigraphical model of the region. The existing groundwater model, based on large-scale effective hydraulic properties, was updated accordingly. The next step is a small-scale probabilistic approach 1) to validate the current existing deterministic groundwater models and 2) to support design for a monitoring network. In preparation for stochastic realizations of the subsurface, a geostatistical analysis of the available primary and secondary data is performed. [less ▲]

Detailed reference viewed: 48 (10 ULg)