References of "Barth, Alexander"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCorrecting circulation biases in a lower-resolution global general circulation model with data assimilation
Canter, Martin ULg; Barth, Alexander ULg; Beckers, Jean-Marie ULg

in Ocean Dynamics (2016)

In this study, we aim at developing a new method of bias correction using data assimilation. This method is based on the stochastic forcing of a model to correct bias by directly adding an additional ... [more ▼]

In this study, we aim at developing a new method of bias correction using data assimilation. This method is based on the stochastic forcing of a model to correct bias by directly adding an additional source term into the model equations. This method is presented and tested first with a twin experiment on a fully controlled Lorenz ’96 model. It is then applied to the lower-resolution global circulation NEMO-LIM2 model, with both a twin experiment and a real case experiment. Sea surface height observations are used to create a forcing to correct the poorly located and estimated currents. Validation is then performed throughout the use of other variables such as sea surface temperature and salinity. Results show that the method is able to consistently correct part of the model bias. The bias correction term is presented and is consistent with the limitations of the global circulation model causing bias on the oceanic currents. [less ▲]

Detailed reference viewed: 18 (5 ULg)
Full Text
Peer Reviewed
See detailCorrection of inertial oscillations by assimilation of HFradar data in a model of the Ligurian Sea
Vandenbulcke, Luc ULg; Barth, Alexander ULg; Beckers, Jean-Marie ULg

in Ocean Dynamics (2016)

This article aims at analyzing if high-frequency radar observations of surface currents allow to improve model forecasts in the Ligurian Sea, where inertial oscillations are a dominant feature. An ... [more ▼]

This article aims at analyzing if high-frequency radar observations of surface currents allow to improve model forecasts in the Ligurian Sea, where inertial oscillations are a dominant feature. An ensemble of ROMS models covering the Ligurian Sea, and nested in the Mediterranean Forecasting System, is coupled with two WERA high-frequency radars. A sensitivity study allows to determine optimal parameters for the ensemble filter. By assimilating observations in a single point, the obtained correction shows that the forecast error covariance matrix represents the inertial oscillations, as well as large- and meso-scale processes. Furthermore, it is shown that the velocity observations can correct the phase and amplitude of the inertial oscillations. Observations are shown to have a strong effect during approximately half a day, which confirms the importance of using a high temporal observation frequency. In general, data assimilation of HF radar observations leads to a skill score of about 30 % for the forecasts of surface velocity. [less ▲]

Detailed reference viewed: 24 (2 ULg)
Full Text
See detailOceanBrowser: on-line visualization of gridded ocean data and in situ observations
Barth, Alexander ULg; Watelet, Sylvain ULg; Troupin, Charles et al

Conference (2016, October)

Detailed reference viewed: 11 (2 ULg)
See detailDINEOF analyses of Sea Surface Temperature data in the Black Sea
Alvera Azcarate, Aida ULg; Vandenbulcke, Luc ULg; Barth, Alexander ULg et al

Scientific conference (2016, September 29)

Detailed reference viewed: 11 (3 ULg)
Full Text
Peer Reviewed
See detailAnalysis of Ocean in Situ Observations and Web - Based Visualization: From Individual Measurements to an Integrated View
Barth, Alexander ULg; Watelet, Sylvain ULg; Troupin, Charles et al

in Diviacco, Paolo; Leadbetter, Adam; Glaves, Helen (Eds.) Oceanographic and Marine Cross-Domain Data Management for Sustainable Development (2016)

The sparsity of observations poses a challenge common to various ocean disciplines. Even for physical parameters where the spatial and temporal coverage is higher, current observational networks ... [more ▼]

The sparsity of observations poses a challenge common to various ocean disciplines. Even for physical parameters where the spatial and temporal coverage is higher, current observational networks undersample a broad spectrum of scales. This situation is generally more severe for chemical and biological parameters because such sensors are less widely deployed. The present chapter describes the analysis tool DIVA (Data-Interpolating Variational Analysis) which is designed to generate gridded fields from in situ observations. DIVA has been applied to various physical (temperature and salinity), chemical (concentration of nitrate, nitrite and phosphate) and biological parameters (abundance of a species). The chapter also shows the technologies used to visualize the gridded fields. Visualization of analyses from in situ observations provide a unique set of challenges since the accuracy of the analysed field is not spatially uniform as it strongly depends on the location of the observations. In addition, an adequate treatment of the depth and time dimensions is essential. [less ▲]

Detailed reference viewed: 50 (2 ULg)
Full Text
Peer Reviewed
See detailAnalysis of SMOS sea surface salinity data using DINEOF
Alvera Azcarate, Aïda ULg; Barth, Alexander ULg; Parard, Gaëlle ULg et al

in Remote Sensing of Environment (2016), 180

n analysis of daily Sea Surface Salinity (SSS) at 0.15 ° × 0.15° spatial resolution from the Soil Moisture and Ocean Salinity (SMOS) satellite mission using DINEOF (Data Interpolating Empirical Orthogonal ... [more ▼]

n analysis of daily Sea Surface Salinity (SSS) at 0.15 ° × 0.15° spatial resolution from the Soil Moisture and Ocean Salinity (SMOS) satellite mission using DINEOF (Data Interpolating Empirical Orthogonal Functions) is presented. DINEOF allows reconstructing missing data using a truncated EOF basis, while reducing the amount of noise and errors in geophysical datasets. This work represents a first application of DINEOF to SMOS SSS. Results show that a reduction of the error and the amount of noise is obtained in the DINEOF SSS data compared to the initial SMOS SSS data. Errors associated to the edge of the swath are detected in 2 EOFs and effectively removed from the final data, avoiding removing the data at the edges of the swath in the initial dataset. The final dataset presents a centered root mean square error of 0.2 in open waters when comparing with thermosalinograph data at their original spatial and temporal resolution. Constant biases present near land masses, large scale biases and latitudinal biases cannot be corrected with DINEOF because persistent signals are retained in high order EOFs, and therefore these need to be corrected separately. The signature of the Douro and Gironde rivers is detected in the DINEOF SSS. The minimum SSS observed in the Gironde plume corresponds to a flood event in June 2013, and the shape and size of the Douro river shows a good agreement with chlorophyll-a satellite data. These examples show the capacity of DINEOF to remove noise and provide a full SSS dataset at a high temporal and spatial resolution with reduced error, and the possibility to retrieve physical signals in zones with high initial errors. [less ▲]

Detailed reference viewed: 67 (11 ULg)
Full Text
See detailData-Interpolating Variational Analysis (DIVA) software: recent development and application
Watelet, Sylvain ULg; Back, Örjan; Barth, Alexander ULg et al

Poster (2016, April 20)

Detailed reference viewed: 20 (3 ULg)
Full Text
Peer Reviewed
See detailReconstruction and analysis of long-term satellite-derived sea surface temperature for the South China Sea
Huynh, Thi Hong Ngu ULg; Alvera Azcarate, Aïda ULg; Barth, Alexander ULg et al

in Journal of Oceanography (2016)

Sea surface temperature (SST) is one of the key variables often used to investigate ocean dynamics, ocean-atmosphere interaction, and climate change. Unfortunately, the SST data sources in the South China ... [more ▼]

Sea surface temperature (SST) is one of the key variables often used to investigate ocean dynamics, ocean-atmosphere interaction, and climate change. Unfortunately, the SST data sources in the South China Sea (SCS) are not abundant due to sparse measurements of in situ SST and a high percentage of missing data in the satellite-derived SST. Therefore, SST data sets with low resolution and/or a short-term period have often been used in previous researches. Here we used Data INterpolating Empirical Orthogonal Functions, a self-consistent and parameter-free method for filling in missing data, to reconstruct the daily nighttime 4-km AVHRR Pathfinder SST for the long-term period spanning from 1989 to 2009. In addition to the reconstructed field, we also estimated the local error map for each reconstructed image. Comparisons between the reconstructed and other data sets (satellite-derived microwave and in situ SSTs) show that the results are reliable for use in many different researches, such as validating numerical models, or identifying and tracking meso-scale oceanic features. Moreover, the Empirical Orthogonal Function (EOF) analysis of the reconstructed SST and the reconstructed SST anomalies clearly shows the subseasonal, seasonal, and interannual variability of SST under the influence of monsoon and El Niño-Southern Oscillation (ENSO), as well as reveals some oceanic features that could not be captured well in previous EOF analyses. The SCS SST often lags ENSO by about half a year. However, in this study, we see that the time lag changes with the frequencies of the SST variability, from 1 to 6 months. [less ▲]

Detailed reference viewed: 66 (10 ULg)
Full Text
See detailComparison of different assimilation schemes in an operational assimilation system with Ensemble Kalman Filter
Yan, Yajing; Barth, Alexander ULg; Beckers, Jean-Marie ULg et al

Poster (2016)

In this paper, four assimilation schemes, including an intermittent assimilation scheme (INT) and three incremental assimilation schemes (IAU 0, IAU 50 and IAU 100), are compared in the same assimilation ... [more ▼]

In this paper, four assimilation schemes, including an intermittent assimilation scheme (INT) and three incremental assimilation schemes (IAU 0, IAU 50 and IAU 100), are compared in the same assimilation experiments with a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. The three IAU schemes differ from each other in the position of the increment update window that has the same size as the assimilation window. 0, 50 and 100 correspond to the degree of superposition of the increment update window on the current assimilation window. Sea surface height, sea surface temperature, and temperature profiles at depth collected between January and December 2005 are assimilated. Sixty ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments The relevance of each assimilation scheme is evaluated through analyses on thermohaline variables and the current velocities. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with independent/semi-independent observations. For deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations, in order to diagnose the ensemble distribution properties in a deterministic way. For probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centered random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system. [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
See detailDeriving ocean climatologies with multivariate coupling
Barth, Alexander ULg; Alvera Azcarate, Aida ULg; Beckers, Jean-Marie ULg

Conference (2016)

In situ measurements of ocean properties are generally sparsely distributed and thus undersample the ocean variability. Deriving ocean climatologies is a challenging task especially for biological and ... [more ▼]

In situ measurements of ocean properties are generally sparsely distributed and thus undersample the ocean variability. Deriving ocean climatologies is a challenging task especially for biological and chemical parameters where the number of data is, by an order of magnitude, smaller than for physical parameters. However, physical and biogeochemical parameters are related through the ocean dynamics. In particular fronts visible in physical parameters are often related to gradients in biogeochemical parameters. Ocean climatologies are generally derived for different variables independently. For biogeochemical parameters, only the very large-scale variability can be derived for poorly sampled areas. Here we present a method to derive multivariate analysis taking the relationship between physical and biogeochemical variables into account. The benefit of this procedure is showed by using model data for salinity, nitrate and phosphate of the Mediterranean Sea. The model fields are sampled at the locations of true observations (extracted from the World Ocean Database 2013) and the analysed fields are compared to the original model fields. The multivariate analysis result in a reduction of the RMS error and to a better representation of the gradients [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
Peer Reviewed
See detailLocal ensemble assimilation scheme with global constraints and conservation
Barth, Alexander ULg; Yan, Yajing ULg; Alvera Azcarate, Aida ULg et al

in Ocean Dynamics (2016), 66

Ensemble assimilation schemes applied in their original, global formulation respect linear conservation properties if the ensemble perturbations are set up accordingly. For realistic ocean systems, only a ... [more ▼]

Ensemble assimilation schemes applied in their original, global formulation respect linear conservation properties if the ensemble perturbations are set up accordingly. For realistic ocean systems, only a relatively small number of ensemble members can be calculated. A localization of the ensemble increment is therefore necessary to filter out spurious long-range correlations. The conservation of the global properties will be lost if the assimilation is performed locally, since the conservation requires a coupling between all model grid points which is removed by the localization. The distribution of ocean observations is often highly inhomogeneous. Systematic errors of the observed parts of the ocean state can lead to spurious adjustment of the non-observed parts via data assimilation and thus to a spurious increase or decrease in long-term simulations of global properties which should be conserved. In this paper, we propose a local assimilation scheme (with different variants and assumptions) which can satisfy global conservation properties. The proposed scheme can also be used for non-local observation operators. Different variants of the proposed scheme are tested in an idealized model and compared to the traditional covariance localization with an ad-hoc step enforcing conservation. It is shown that the inclusion of the conservation property reduces the total RMS error and that the presented stochastic and deterministic schemes avoiding error space rotation provide better results than the traditional covariance localization. [less ▲]

Detailed reference viewed: 23 (1 ULg)
Full Text
See detailCorrecting Biases in a lower resolution global circulation model with data assimilation
Canter, Martin ULg; Barth, Alexander ULg

Poster (2016)

With this work, we aim at developping a new method of bias correction using data assimilation. This method is based on the stochastic forcing of a model to correct bias. First, through a preliminary run ... [more ▼]

With this work, we aim at developping a new method of bias correction using data assimilation. This method is based on the stochastic forcing of a model to correct bias. First, through a preliminary run, we estimate the bias of the model and its possible sources. Then, we establish a forcing term which is directly added inside the model’s equations. We create an ensemble of runs and consider the forcing term as a control variable during the assimilation of observations. We then use this analysed forcing term to correct the bias of the model. Since the forcing is added inside the model, it acts as a source term, unlike external forcings such as wind. This procedure has been developed and successfully tested with a twin experiment on a Lorenz 95 model. It is currently being applied and tested on the sea ice ocean NEMO LIM model, which is used in the PredAntar project. NEMO LIM is a global and low resolution (2 degrees) coupled model (hydrodynamic model and sea ice model) with long time steps allowing simulations over several decades. Due to its low resolution, the model is subject to bias in area where strong currents are present. We aim at correcting this bias by using perturbed current fields from higher resolution models and randomly generated perturbations. The random perturbations need to be constrained in order to respect the physical properties of the ocean, and not create unwanted phenomena. To construct those random perturbations, we first create a random field with the Diva tool (Data-Interpolating Variational Analysis). Using a cost function, this tool penalizes abrupt variations in the field, while using a custom correlation length. It also decouples disconnected areas based on topography. Then, we filter the field to smoothen it and remove small scale variations. We use this field as a random stream function, and take its derivatives to get zonal and meridional velocity fields. We also constrain the stream function along the coasts in order not to have currents perpendicular to the coast. The randomly generated stochastic forcing are then directly injected into the NEMO LIM model’s equations in order to force the model at each timestep, and not only during the assimilation step. Results from a twin experiment will be presented. This method is being applied to a real case, with observations on the sea surface height available from the mean dynamic topography of CNES (Centre national d’études spatiales). The model, the bias correction, and more extensive forcings, in particular with a three dimensional structure and a time-varying component, will also be presented. [less ▲]

Detailed reference viewed: 14 (2 ULg)
Full Text
Peer Reviewed
See detailAssimilation of sea surface temperature, sea ice concentration and sea ice drift in a model of the Southern Ocean
Barth, Alexander ULg; Canter, Martin ULg; Van Schaeybroeck, Bert et al

in Ocean Modelling (2015), 93

Current ocean models have relatively large errors and biases in the Southern Ocean. The aim of this study is to provide a reanalysis from 1985 to 2006 assimilating sea surface temperature, sea ice ... [more ▼]

Current ocean models have relatively large errors and biases in the Southern Ocean. The aim of this study is to provide a reanalysis from 1985 to 2006 assimilating sea surface temperature, sea ice concentration and sea ice drift. In the following it is also shown how surface winds in the Southern Ocean can be improved using sea ice drift estimated from infrared radiometers. Such satellite observations are available since the late seventies and have the potential to improve the wind forcing before more direct measurements of winds over the ocean are available using scatterometry in the late nineties. The model results are compared to the assimilated data and to independent measurements (the World Ocean Database 2009 and the mean dynamic topography based on observations). The overall improvement of the assimilation is quantified, in particular the impact of the assimilation on the representation of the polar front is discussed. Finally a method to identify model errors in the Antarctic sea ice area is proposed based on Model Output Statistics techniques using a series of potential predictors. This approach provides new directions for model improvements. [less ▲]

Detailed reference viewed: 41 (9 ULg)
Full Text
Peer Reviewed
See detailA stochastic operational forecasting system of the Black Sea: Technique and validation
Vandenbulcke, Luc ULg; Barth, Alexander ULg

in Ocean Modelling (2015), 93

In this article, we present the latest version of an ensemble forecasting system of the hydrodynamics of the Black Sea, based on the GHER model. The system includes the Weakly Constrained Ensembles ... [more ▼]

In this article, we present the latest version of an ensemble forecasting system of the hydrodynamics of the Black Sea, based on the GHER model. The system includes the Weakly Constrained Ensembles algorithm to generate random, but physically balanced perturbations to initialize members of the ensemble. On top of initial conditions, the ensemble accounts also for uncertainty on the atmospheric forcing fields, and on some scalar parameters such as river flows or model diffusion coefficients. The forecasting system also includes the Ocean Assimilation Kit, a sequential data assimilation package implementing the SEEK and Ensemble Kalman filters. A novel aspect of the forecasting system is that not only our best estimate of the future ocean state is provided, but also the associated error estimated from the ensemble of models. The primary goal of this paper is to quantitatively show that the ensemble variability is a good estimation of the model error, regardless of the magnitude of the forecast errors themselves. In order for this estimation to be meaningful, the model itself should also be well validated. Therefore, we describe the model validation against general circulation patterns. Some particular aspects critical for the Black Sea circulation are validated as well: the mixed layer depth and the shelfopen sea exchanges. The model forecasts are also compared with observed sea surface temperature, and errors are compared to those of another operational model as well. [less ▲]

Detailed reference viewed: 40 (1 ULg)
Full Text
See detailOcean Modeling: Bias correction through stochastic forcing.
Canter, Martin ULg; Barth, Alexander ULg

Conference (2015, April 14)

With this work, we aim at developping a new method of bias correction using data assimilation. This method is based on the stochastic forcing of a model to correct bias. First, through a preliminary run ... [more ▼]

With this work, we aim at developping a new method of bias correction using data assimilation. This method is based on the stochastic forcing of a model to correct bias. First, through a preliminary run, we estimate the bias of the model and its possible sources. Then, we es- tablish a forcing term which is directly added inside the model’s equations. We create an ensemble of runs and consider the forcing term as a control variable during the assimilation of observations. We then use this analysed forcing term to correct the bias of the model. Since the forcing is added inside the model, it acts as a source term, unlike external forcings such as wind. This procedure has been developed and successfully tested with a twin experiment on a Lorenz 95 model. Indeed, we were able to estimate and recover an artificial bias that had been added into the model. This bias had a spatial structure and was constant through time. The mean and behaviour of the corrected model corresponded to those the reference model. It is currently being applied and tested on the sea ice ocean NEMO LIM model, which is used in the PredAntar project. NEMO LIM is a global and low resolution (2 degrees) coupled model (hydrodynamic model and sea ice model) with long time steps allowing simulations over several decades. Due to its low resolution, the model is subject to bias in area where strong currents are present. We aim at correcting this bias by using perturbed current fields from higher resolution models and randomly generated perturbations. The random perturbations need to be constrained in order to respect the physical properties of the ocean, and not create unwanted phenomena. To construct those random perturbations, we first create a random field with the Diva tool (Data-Interpolating Variational Analysis). Using a cost function, this tool penalizes abrupt variations in the field, while using a custom correlation length. It also decouples disconnected areas based on topography. Then, we filter the field to smoothen it and remove small scale variations. We use this field as a random stream function, and take its derivatives to get zonal and meridional velocity fields. We also constrain the stream function along the coasts in order not to have currents perpendicular to the coast. The randomly generated stochastic forcing are then directly injected into the NEMO LIM model’s equa- tions in order to force the model at each timestep, and not only during the assimilation step. The first results on a twin experiment with the NEMO LIM model will be presented. [less ▲]

Detailed reference viewed: 14 (0 ULg)