References of "Ball, Gregory, F"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRapid control of reproductive behaviour by locally synthesised oestrogens: focus on aromatase.
Cornil, Charlotte ULg; Seredynski, Aurore ULg; de Bournonville, Catherine ULg et al

in Journal of Neuroendocrinology (in press)

Oestrogens activate nucleus- and membrane-initiated signalling. Nucleus-initiated events control a wide array of physiological and behavioural responses. These effects generally take place within ... [more ▼]

Oestrogens activate nucleus- and membrane-initiated signalling. Nucleus-initiated events control a wide array of physiological and behavioural responses. These effects generally take place within relatively long periods of time (several hours to days). By contrast, membrane-initiated signalling affects a multitude of cellular functions in a much shorter timeframe (seconds to minutes). However, much less is known about their functional significance. Furthermore, the origin of the oestrogens able to trigger these acute effects is rarely examined. Finally, these two distinct types of oestrogenic actions have often been studied independently such that we do not exactly know how they cooperate to control the same response. The present review presents a synthesis of recent work carried out in our laboratory that aimed to address these issues in the context of the study of male sexual behaviour in Japanese quail, which is a considered as a suitable species for tackling these issues. The first section presents data indicating that 17b-oestradiol, or its membrane impermeable analogues, acutely enhances measures of male sexual motivation but does not affect copulatory behaviour. These effects depend on the activation of membrane-initiated events and local oestrogen production. The second part of this review discusses the regulation of brain oestrogen synthesis through post-translational modifications of the enzyme aromatase. Initially discovered in vitro, these rapid and reversible enzymatic modulations occur in vivo following variations in the social and environment context and therefore provide a mechanism of acute regulation of local oestrogen provision with a spatial and time resolution compatible with the rapid effects observed on male sexual behaviour. Finally, we discuss how these distinct modes of oestrogenic action (membrane- versus nucleus-initiated) acting in different time frames (short- versus long-term) interact to control different components (motivation versus performance) of the same behavioural response and improve reproductive fitness. [less ▲]

Detailed reference viewed: 19 (1 ULg)
See detailEstrogens control female sexual motivation and receptivity in quail.
de Bournonville, Catherine ULg; Ball, Gregory, F.; Balthazart, Jacques ULg et al

Poster (2013, November 10)

Detailed reference viewed: 12 (1 ULg)
Full Text
Peer Reviewed
See detailA new method for in vitro detection of bromodeoxyuridine in serum: a proof of concept in a songbird species, the canary.
Barker, Jennifer M.; Charlier, Thierry D.; Ball, Gregory F. et al

in PloS one (2013), 8(5), 63692

Systemic injection of a thymidine analogue such as bromodeoxyuridine (BrdU) in vertebrates is commonly used to detect and study cell production during development, adulthood, and pathology, particularly ... [more ▼]

Systemic injection of a thymidine analogue such as bromodeoxyuridine (BrdU) in vertebrates is commonly used to detect and study cell production during development, adulthood, and pathology, particularly in studies of adult neurogenesis. Although researchers are applying this technique to multiple species in various physiological conditions, the rate of BrdU clearance from the serum remains unknown in most cases. Changes in this clearance rate as a function of the species, sex or endocrine condition could however profoundly affect the interpretation of the results. We describe a rapid, sensitive, but simple bioassay for post-injection detection and quantification of BrdU in serum. This procedure was shown to be suitable for determining the length of time a thymidine analogue remains in the bloodstream of one avian species and seems applicable to any vertebrate provided sufficiently large blood samples can be collected. This technique was used to demonstrate that, in canaries, BrdU injected at a dose of 100 mg/kg is no longer available for incorporation into DNA between 30 and 60 min post-injection, a delay shorter than anticipated based on the available literature. Preliminary data suggest a similar fast clearance in Japanese quail and mice. [less ▲]

Detailed reference viewed: 4 (0 ULg)
Full Text
Peer Reviewed
See detailAnatomically discrete sex differences and enhancement by testosterone of cell proliferation in the telencephalic ventricle zone of the adult canary brain.
Barker, Jennifer M.; Ball, Gregory F.; Balthazart, Jacques ULg

in Journal of chemical neuroanatomy (2013)

Previous work in songbirds has suggested that testosterone increases neuronal recruitment and survival in HVC but does not affect neuronal proliferation in the ventricular zone and that males and females ... [more ▼]

Previous work in songbirds has suggested that testosterone increases neuronal recruitment and survival in HVC but does not affect neuronal proliferation in the ventricular zone and that males and females have similar rates of proliferation except at discrete locations. Many of these conclusions are however based on limited data or were inferred indirectly. Here we specifically tested the effects of testosterone on cellular proliferation in the ventricular zone of both male and female adult canaries. We implanted adult birds of both sexes with testosterone or empty implants for 1 week and injected them with BrdU. One day later, we collected their brains and quantified BrdU-positive cells in the ventricular zone (VZ) at different rostro-caudal levels of the brain, ranging from the level where the song nucleus Area X occurs through the caudal extent of HVC. Proliferation in the dorsal part of the VZ was low and unaffected by sex or testosterone treatment. In the ventral part of the VZ, females had more proliferating cells than males, but only at rostral levels, near Area X. Also in the ventral part of the VZ, testosterone increased proliferation in birds of both sexes, but only in the mid- to caudal-VZ, caudal to the level of Area X, around the septum and HVC. We thus demonstrate here that there is both an effect of testosterone and possibly a more subtle effect of sex on cellular proliferation in the adult songbird brain, and that these effects are specific to different levels of the brain. [less ▲]

Detailed reference viewed: 2 (0 ULg)
Full Text
Peer Reviewed
See detailDifferential effects of global versus local testosterone on singing behavior and its underlying neural substrate.
Alward, Beau A.; Balthazart, Jacques ULg; Ball, Gregory F.

in Proceedings of the National Academy of Sciences of the United States of America (2013), 110(48), 19573-8

Steroid hormones regulate multiple but distinct aspects of social behaviors. Testosterone (T) has multiple effects on learned courtship song in that it regulates both the motivation to sing in a ... [more ▼]

Steroid hormones regulate multiple but distinct aspects of social behaviors. Testosterone (T) has multiple effects on learned courtship song in that it regulates both the motivation to sing in a particular social context as well as the quality of song produced. The neural substrate(s) where T acts to regulate the motivation to sing as opposed to other aspects of song has not been definitively characterized. We show here that T implants in the medial preoptic nucleus (POM) of castrated male canaries (Serinus canaria) increase song rate but do not enhance acoustic features such as song stereotypy compared with birds receiving peripheral T that can act globally throughout the brain. Strikingly, T action in the POM increased song control nuclei volume, consistent with the hypothesis that singing activity induces neuroplasticity in the song control system independent of T acting in these nuclei. When presented with a female canary, POM-T birds copulated at a rate comparable to birds receiving systemic T but produced fewer calls and songs in her presence. Thus, POM is a key site where T acts to activate copulation and increase song rate, an appetitive sexual behavior in songbirds, but T action in other areas of the brain or periphery (e.g., HVC, dopaminergic cell groups, or the syrinx) is required to enhance the quality of song (i.e., stereotypy) as well as regulate context-specific vocalizations. These results have broad implications for research concerning how steroids act at multiple brain loci to regulate distinct sociosexual behaviors and the associated neuroplasticity. [less ▲]

Detailed reference viewed: 32 (11 ULg)
Full Text
Peer Reviewed
See detailDynamic changes in brain aromatase activity following sexual interactions in males: Where, when and why?
de Bournonville, Catherine ULg; Dickens, Molly J.; Ball, Gregory F. et al

in Psychoneuroendocrinology (2013), 38(6), 789-99

It is increasingly recognized that estrogens produce rapid and transient effects at many neural sites ultimately impacting physiological and behavioral endpoints. The ability of estrogens to acutely ... [more ▼]

It is increasingly recognized that estrogens produce rapid and transient effects at many neural sites ultimately impacting physiological and behavioral endpoints. The ability of estrogens to acutely regulate cellular processes implies that their concentration should also be rapidly fine-tuned. Accordingly, rapid changes in the catalytic activity of aromatase, the limiting enzyme for estrogen synthesis, have been identified that could serve as a regulatory mechanism of local estrogen concentrations. However, the precise anatomical localization, time-course, triggering stimuli and functional significance of these enzymatic changes in vivo are not well understood. To address these issues as to where, when and why aromatase activity (AA) rapidly changes after sexual interactions, AA was assayed in six populations of aromatase-expressing cells microdissected from the brain of male quail that experienced varying durations of visual exposure to or copulation with a female. Sexual interactions resulted in a rapid AA inhibition. This inhibition occurred in specific brain regions (including the medial preoptic nucleus), in a context-dependent fashion and time-scale suggestive of post-translational modifications of the enzyme. Interestingly, the enzymatic fluctuations occurring in the preoptic area followed rather than preceded copulation and were tied specifically to the female's presence. This pattern of enzymatic changes suggests that rapid estrogen effects are important during the motivational phase of the behavior to trigger physiological events essential to activate mate search and copulation. [less ▲]

Detailed reference viewed: 41 (10 ULg)
Full Text
Peer Reviewed
See detailRapid control of male typical behaviors by brain-derived estrogens
Cornil, Charlotte ULg; Ball, Gregory F; Balthazart, Jacques ULg

in Frontiers in Neuroendocrinology (2012)

Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance ... [more ▼]

Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance of such actions in males and the mechanism that control local estrogen concentration with a spatial and time resolution compatible with these non-genomic actions had rarely been examined. Here, we review evidence that estrogens rapidly modulate a variety of behaviors in male vertebrates. Then, we present in vitro work supporting the existence of a control mechanism of local brain estrogen synthesis by aromatase along with in vivo evidence that rapid changes in aromatase activity also occur in a region-specific manner in response to changes in the social or environmental context. Finally, we suggest that the brain estrogen provision may also play a significant role in females. Together these data bolster the hypothesis that brain-derived estrogens should be considered as neuromodulators. [less ▲]

Detailed reference viewed: 40 (7 ULg)
Full Text
Peer Reviewed
See detailSex differences in brain aromatase activity: genomic and non-genomic controls
Balthazart, Jacques ULg; Charlier, Thierry; Cornil, Charlotte ULg et al

in Frontiers in Neuroendocrine Science (2011), 2

Aromatization of testosterone into estradiol in the preoptic area plays a critical role in the activation of male copulation in quail and in many other vertebrate species. Aromatase expression in quail ... [more ▼]

Aromatization of testosterone into estradiol in the preoptic area plays a critical role in the activation of male copulation in quail and in many other vertebrate species. Aromatase expression in quail and in other birds is higher than in rodents and other mammals, which has facilitated the study of the controls and functions of this enzyme. Over relatively long time periods (days to months), brain aromatase activity (AA), and transcription are markedly (four- to sixfold) increased by genomic actions of sex steroids. Initial work indicated that the preoptic AA is higher in males than in females and it was hypothesized that this differential production of estrogen could be a critical factor responsible for the lack of behavioral activation in females. Subsequent studies revealed, however, that this enzymatic sex difference might contribute but is not sufficient to explain the sex difference in behavior. Studies of AA, immunoreactivity, and mRNA concentrations revealed that sex differences observed when measuring enzymatic activity are not necessarily observed when one measures mRNA concentrations. Discrepancies potentially reflect post-translational controls of the enzymatic activity. AA in quail brain homogenates is rapidly inhibited by phosphorylation processes. Similar rapid inhibitions occur in hypothalamic explants maintained in vitro and exposed to agents affecting intracellular calcium concentrations or to glutamate agonists. Rapid changes in AA have also been observed in vivo following sexual interactions or exposure to short-term restraint stress and these rapid changes in estrogen production modulate expression of male sexual behaviors. These data suggest that brain estrogens display most if not all characteristics of neuromodulators if not neurotransmitters. Many questions remain however concerning the mechanisms controlling these rapid changes in estrogen production and their behavioral significance. [less ▲]

Detailed reference viewed: 35 (2 ULg)
Full Text
Peer Reviewed
See detailOrganizing effects of sex steroids on brain aromatase activity in quail
Cornil, Charlotte ULg; Ball, Gregory F; Balthazart, Jacques ULg et al

in PLoS ONE (2011), 6(4), 19196

Detailed reference viewed: 28 (10 ULg)
Full Text
Peer Reviewed
See detailSEASONAL AND INDIVIDUAL VARIATION IN SINGING BEHAVIOR CORRELATES WITH ALPHA 2-NORADRENERGIC RECEPTOR DENSITY IN BRAIN REGIONS IMPLICATED IN SONG, SEXUAL, AND SOCIAL BEHAVIOR
Heimovics, Sarah A.; Cornil, Charlotte ULg; Hellis, J. M. S. et al

in Neuroscience (2011), 182

In seasonally breeding male songbirds, both the function of song and the stimuli that elicit singing behavior change seasonally. The catecholamine norepinephrine (NE) modulates attention and arousal ... [more ▼]

In seasonally breeding male songbirds, both the function of song and the stimuli that elicit singing behavior change seasonally. The catecholamine norepinephrine (NE) modulates attention and arousal across behavioral states, yet the role of NE in seasonally-appropriate vocal communication has not been well-studied. The present study explored the possibility that seasonal changes in alpha 2-noradrenergic receptors (alpha2-R) within song control regions and brain regions implicated in sexual arousal and social behavior contribute to seasonal changes in song behavior in male European starlings (Sturnus vulgaris). We quantified singing behavior in aviary housed males under spring breeding season conditions and fall conditions. alpha2-R were identified with the selective ligand [3H]RX821002 using autoradiographic methods. The densities of alpha2-R in song control regions (HVC and the robust nucleus of the arcopallium [RA]) and the lateral septum (LS) were lower in Spring Condition males. alpha2-R densities in the caudal portion of the medial preoptic nucleus (POM) related negatively to singing behavior. Testosterone concentrations were highest in Spring Condition males and correlated with alpha2-R in LS and POM. Results link persistent seasonal alterations in the structure or function of male song to seasonal changes in NE alpha2-Rs in HVC, RA, and LS. Individual differences in alpha2-R in the POM may in part explain individual differences in song production irrespective of the context in which a male is singing, perhaps through NE modification of male sexual arousal. [less ▲]

Detailed reference viewed: 21 (8 ULg)
Full Text
Peer Reviewed
See detailRapid changes of aromatase activity in discrete brain regions following social interactions
de Bournonville, Catherine ULg; Ball, Gregory, F.; Balthazart, Jacques ULg et al

in Trabajos del Instituto Cajal (2011), LXXXIII

Detailed reference viewed: 28 (11 ULg)
Full Text
Peer Reviewed
See detailEffects of sex steroids on aromatase mRNA expression in the male and female quail brain.
Voigt, Cornelia; Ball, Gregory F; Balthazart, Jacques ULg

in General and Comparative Endocrinology (2011), 170(1), 180-8

Castrated male quail display intense male-typical copulatory behavior in response to exogenous testosterone but ovariectomized females do not. The behavior of males is largely mediated by the central ... [more ▼]

Castrated male quail display intense male-typical copulatory behavior in response to exogenous testosterone but ovariectomized females do not. The behavior of males is largely mediated by the central aromatization of testosterone into estradiol. The lack of behavioral response in females could result from a lower rate of aromatization. This is probably not the case because although the enzymatic sex difference is clearly present in gonadally intact sexually mature birds, it is not reliably found in gonadectomized birds treated with testosterone, in which the behavioral sex difference is always observed. We previously discovered that the higher aromatase activity in sexually mature males as compared to females is not associated with major differences in aromatase mRNA density. A reverse sex difference (females>males) was even detected in the bed nucleus of the stria terminalis. We analyzed here by in situ hybridization histochemistry the density of aromatase mRNA in gonadectomized male and female quail that were or were not exposed to a steroid profile typical of their sex. Testosterone and ovarian steroids (presumably estradiol) increased aromatase mRNA concentration in males and females respectively but mRNA density was similar in both sexes. A reverse sex difference in aromatase mRNA density (females>males) was detected in the bed nucleus of subjects exposed to sex steroids. Together these data suggest that although the induction of aromatase activity by testosterone corresponds to an increased transcription of the enzyme, the sex difference in enzymatic activity results largely from post-transcriptional controls that remain to be identified. [less ▲]

Detailed reference viewed: 60 (2 ULg)
Full Text
Peer Reviewed
See detailSexual arousal, is it for mammals only?
Ball, Gregory F; Balthazart, Jacques ULg

in Hormones and Behavior (2011), 59(5), 645-55

Sexual arousal has many dimensions and has consequently been defined in various ways. In humans, sexual arousal can be assessed based in part on verbal communication. In male non-human mammalian species ... [more ▼]

Sexual arousal has many dimensions and has consequently been defined in various ways. In humans, sexual arousal can be assessed based in part on verbal communication. In male non-human mammalian species, it has been argued that arousal can only be definitively inferred if the subject exhibits a penile erection in a sexual context. In non-mammalian species that lack an intromittent organ, as is the case for most avian species, the question of how to assess sexual arousal has not been thoroughly addressed. Based on studies performed in male Japanese quail, we argue that several behavioral or physiological characteristics provide suitable measures of sexual arousal in birds and probably also in other tetrapods. These indices include, the performance of appetitive sexual behavior in anticipation of copulation (although anticipation and arousal are not synonymous), the activation of specific brain area as identified by the detection of the expression of immediate early genes (fos, egr-1) or by 2-deoxygucose quantitative autoradiography, and above all, by the release of dopamine in the medial preoptic area as measured by in vivo dialysis. Based on these criteria, it is possible to assess in birds sexual arousal in its broadest sense but meeting the more restrictive definition of arousal proposed for male mammals (erection in an explicit sexual context) is and will probably remain impossible in birds until refinement of in vivo imaging techniques such fMRI allow us to match in different species, with and without an intromittent organ, the brain areas that are activated in the presence of specific stimuli. [less ▲]

Detailed reference viewed: 12 (4 ULg)
Full Text
Peer Reviewed
See detailAndrogens and estrogens synergistically regulate the expression of doublecortin and enhance neuronal recruitment in the song system of adult female canaries.
Yamamura, Takashi; Barker, Jennifer ULg; Balthazart, Jacques ULg et al

in Journal of Neuroscience (2011)

Vocal control nuclei in songbirds display seasonal changes in volume that are regulated by testosterone (T) and its androgenic (5α-dihydrotestosterone; DHT) or estrogenic metabolites (17β-estradiol; E2 ... [more ▼]

Vocal control nuclei in songbirds display seasonal changes in volume that are regulated by testosterone (T) and its androgenic (5α-dihydrotestosterone; DHT) or estrogenic metabolites (17β-estradiol; E2). In male canaries, T regulates expression of the microtubule-associated protein doublecortin (DCX), a marker of neurogenesis. We examined the effect of T and its two metabolites alone or in combination on DCX expression in adult female canaries. Treatment with T or with DHT+E2 increased HVC volume and neuron numbers as well as the total numbers of fusiform (migrating) and round (differentiating) DCX neurons in the nucleus but generally not in adjacent areas. DHT or E2 alone did not increase these measures but increased the density of fusiform DCX cells per section. Similar results were observed in Area X although some effects did not reach significance presumably because plasticity in X is mediated transynaptically and follows HVC changes with some delay. There was no effect of any treatment on the total number of neurons in Area X and no change in DCX cell densities was detected in other parts of the nidopallium nor in LMAN. DHT and E2 by themselves thus increase density of DCX cells migrating through HVC but are not sufficient in isolation to induce the recruitment of these newborn neurons in the nucleus. These effects are generally not observed in the rest of the nidopallium implying that steroids only act on the attraction and recruitment of new neurons in HVC without having any major effects on their production at the ventricle wall. [less ▲]

Detailed reference viewed: 17 (0 ULg)
See detailTestosterone increases cell turnover in song nucleus HVC and increases cell recruitment into Area X of adult female canaries.
Barker, Jennifer ULg; Yamamura, Takashi; Balthazart, Jacques ULg et al

Poster (2010, May)

In songbirds, song control nuclei such as HVC and Area X, show seasonal changes in volume that are regulated, at least in part, by the action of gonadal testosterone (T) and its metabolites. These changes ... [more ▼]

In songbirds, song control nuclei such as HVC and Area X, show seasonal changes in volume that are regulated, at least in part, by the action of gonadal testosterone (T) and its metabolites. These changes in volume are a result of changes in cell size, dendritic branching and, in HVC, the incorporation of newborn neurons. Doublecortin (DCX) is a microtubule-associated protein expressed during development and in adulthood in post-mitotic migrating and differentiating neurons in mammals. Our previous studies in male canaries demonstrated that DCX is expressed in BrdU-positive neurons consistent with DCX being a marker of neurogenesis in adult canaries. Testosterone induces marked increases in song nuclei volume in adult female canaries making these nuclei more male-like. Within the songbird brain, T can be metabolized to 5 alpha-dihydrotestosterone (DHT) and 17 beta-estradiol (E2). We found previously that both these metabolites are required to increase the volume of song nuclei in adult female canaries, but the cellular basis of this adult neuroplasticity is not well understood. Within HVC, the number of DCX-immunoreactive (ir) cells can be increased by photostimulation or treatment with T, but the effects of T and its metabolites on cell death in the songbird brain had not yet been elucidated. We therefore examined the effect of DHT and E2 on DCX expression and cell death in the song nuclei of adult female canaries. Intact female canaries were implanted with Silastic tubing containing crystalline T, DHT, E2, or a combination of DHT+E2. Control animals received empty implants. All birds were kept under early spring-like photoperiodic conditions (11L:13D) for 3 weeks. In HVC, the total number of DCX-ir cells was increased by treatment with T or DHT+E2 as compared to control birds, but was not affected by treatment with DHT or E2 alone. The number of pyknotic cells observed in the HVC was also increased by T but not by its metabolites. In Area X, the total number of DCX-ir cells was increased by treatment with T or DHT+E2, but the number of pyknotic cells was unaffected by hormone treatment. These results suggest that T enhances cellular turnover in the HVC (migration into, and cell death within, HVC), but affects only recruitment of new neurons into Area X. [less ▲]

Detailed reference viewed: 56 (3 ULg)
Full Text
Peer Reviewed
See detailJapanese quail as a model system for studying the neuroendocrine control of reproductive and social behaviors.
Ball, Gregory F; Balthazart, Jacques ULg

in ILAR Journal (2010), 51(4), 310-25

Japanese quail (Coturnix japonica; referred to simply as quail in this article) readily exhibit sexual behavior and related social behaviors in captive conditions and have therefore proven valuable for ... [more ▼]

Japanese quail (Coturnix japonica; referred to simply as quail in this article) readily exhibit sexual behavior and related social behaviors in captive conditions and have therefore proven valuable for studies of how early social experience can shape adult mate preference and sexual behavior. Quail have also been used in sexual conditioning studies illustrating that natural stimuli predict successful reproduction via Pavlovian processes. In addition, they have proven to be a good model to study how variation in photoperiod regulates reproduction and how variation in gonadal steroid hormones controls sexual behavior. For example, studies have shown that testosterone activates male-typical behaviors after being metabolized into estrogenic and androgenic metabolites. A critical site of action for these metabolites is the medial preoptic nucleus (POM), which is larger in males than in females. The enzyme aromatase converts testosterone to estradiol and is enriched in the POM in a male-biased fashion. Quail studies were the first to show that this enzyme is regulated both relatively slowly via genomic actions of steroids and more quickly via phosphorylation. With this base of knowledge and the recent cloning of the entire genome of the closely related chicken, quail will be valuable for future studies connecting gene expression to sexual and social behaviors. [less ▲]

Detailed reference viewed: 16 (2 ULg)