References of "Baillien, Michelle"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRapid increase in aggressive behavior precedes the decrease in brain aromatase activity during socially mediated sex change in Lythrypnus dalli.
Black, Michael P; Balthazart, Jacques ULg; Baillien, Michelle et al

in General and Comparative Endocrinology (2011), 170(1), 119-24

In the bluebanded goby, Lythrypnus dalli, removal of the male from a social group results in a rapid behavioral response where one female becomes dominant and changes sex to male. In a previous study ... [more ▼]

In the bluebanded goby, Lythrypnus dalli, removal of the male from a social group results in a rapid behavioral response where one female becomes dominant and changes sex to male. In a previous study, within hours of male removal, aromatase activity in the brain (bAA) of dominant females was almost 50% lower than that of control females from a group in which the male had not been removed. For those females that displayed increased aggressive behavior after the male was removed, the larger the increase in aggressive behavior, the greater the reduction in bAA. To investigate whether decreased bAA leads to increased aggression, the present study used a more rapid time course of behavioral profiling and bAA assay, looking within minutes of male removal from the group. There were no significant differences in bAA between control females (large females from groups with the male still present), females that doubled their aggressive behavior by 10 or 20 min after male removal, or females that did not double their aggressive behavior within 30 min after male removal. Further, individual variation in bAA and aggressive behavior were not correlated in these fish. Whole brain decreases in aromatase activity thus appear to follow, rather than precede, rapid increases in aggressive behavior, which provides one potential mechanism underlying the rapid increase in androgens that follows aggressive interactions in many vertebrate species. For fish species that change sex from female to male, this increase in androgens could subsequently facilitate sex change. [less ▲]

Detailed reference viewed: 18 (3 ULg)
Full Text
See detailRapid changes in production and behavioral action of estrogens
Balthazart, Jacques ULg; Baillien, Michelle; Charlier, Thierry ULg et al

in Trabajos del Instituto Cajal (2005), 80

Detailed reference viewed: 9 (4 ULg)
See detailBehavioral effects of rapid changes in aromatase activity in the central nervous system
Balthazart, Jacques ULg; Baillien, Michelle; Cornil, Charlotte ULg et al

in Kordon, C.; Gaillard, R. C.; Christen, Y. (Eds.) Research and perspectives in endocrine action (2004)

Detailed reference viewed: 15 (5 ULg)
Full Text
Peer Reviewed
See detailCalcium-dependent phosphorylation processes control brain aromatase in quail
Balthazart, Jacques ULg; Baillien, Michelle; Charlier, Thierry ULg et al

in European Journal of Neuroscience (2003), 17(8), 1591-1606

Increased gene transcription activated by the binding of sex steroids to their cognate receptors is one important way in which oestrogen synthase (aromatase) activity is regulated in the brain. This ... [more ▼]

Increased gene transcription activated by the binding of sex steroids to their cognate receptors is one important way in which oestrogen synthase (aromatase) activity is regulated in the brain. This control mechanism is relatively slow (hours to days) but recent data indicate that aromatase activity in quail preoptic-hypothalamic homogenates is also rapidly (within minutes) affected by exposure to conditions that enhance Ca2+-dependent protein phosphorylation. We demonstrate here that Ca2+-dependent phosphorylations controlled by the activity of multiple protein kinases including PKC, and possibly also PKA and CAMK, can rapidly down-regulate aromatase activity in brain homogenates. These phosphorylations directly affect the aromatase molecule itself. Western blotting experiments on aromatase purified by immunoprecipitation reveal the presence on the enzyme of phosphorylated serine, threonine and tyrosine residues in concentrations that are increased by phosphorylating conditions. Cloning and sequencing of the quail aromatase identified a 1541-bp open reading frame that encodes a predicted 490-amino-acid protein containing all the functional domains that have been previously described in the mammalian and avian aromatase. Fifteen predicted consensus phosphorylation sites were identified in this sequence, but only two of these (threonine 455 and 486) match the consensus sequences corresponding to the protein kinases that were shown to affect aromatase activity during the pharmacological experiments (i.e. PKC and PKA). This suggests that the phosphorylation of one or both of these residues represents the mechanism underlying, at least in part, the rapid changes in aromatase activity. [less ▲]

Detailed reference viewed: 38 (15 ULg)
See detailCloning and identification of functional domains in quail Brain aromatase
Charlier, Thierry ULg; Baillien, Michelle; Ball, Gregory F. et al

Poster (2003)

Recent evidence indicates that aromatase activity (AA) in the hypothalamus is not only modulated by slow (hours to days) genomic actions but also through fast (seconds to minutes) non-genomic mechanisms ... [more ▼]

Recent evidence indicates that aromatase activity (AA) in the hypothalamus is not only modulated by slow (hours to days) genomic actions but also through fast (seconds to minutes) non-genomic mechanisms. We recently showed that Calcium (Ca2+)-dependent phosphorylations catalyzed by multiple protein kinases including PKC, and possibly PKA and CAMK, rapidly down-regulate AA in quail hypothalamic homogenates. Western blotting experiments also indicated that phosphorylations affect the aromatase molecule itself but it was impossible to fully characterize the putative phosphorylation sites on the quail enzyme because its sequence was unknown. We therefore cloned and sequenced the quail brain aromatase. We identified a 1541-bp open reading frame that encodes a predicted 490-amino acid protein containing all functional domains previously described in mammalian and other avian aromatases. Multiple motifs match consensus sequences corresponding to several protein kinases including those that were shown to affect AA during pharmacological experiments with specific kinase inhibitors (e.g., PKC, PKA, MAPK, Myosine light chain kinase, Tyr. kinase). Another potential control pathway of AA, independent from phosphorylations, could involve a direct control by Ca2+-dependent calmodulin (CAM), as suggested by the identification in Western blots of CAM on purified aromatase from quail hypothalamic homogenates. Accordingly, two Ca2+-dependent calmodulin binding motifs (1-8-14b) as defined by Rhoads and Friedberg (FASEB, 1997, 11:331-340) are present and conserved in most vertebrates including quail aromatase. These results suggest that the phosphorylation of some residues as well as the direct binding of calmodulin on the aromatase protein represent part of the mechanism(s) underlying the rapid changes in AA. [less ▲]

Detailed reference viewed: 6 (1 ULg)
Full Text
Peer Reviewed
See detailMultiple mechanisms control brain aromatase activity at the genomic and non-genomic level
Balthazart, Jacques ULg; Baillien, Michelle; Charlier, Thierry ULg et al

in Journal of Steroid Biochemistry & Molecular Biology (2003), 86

Evidence has recently accumulated indicating that aromatase activity in the preoptic area is modulated in parallel by both slow (hours to days) genomic and rapid (minutes to hours) non-genomic mechanisms ... [more ▼]

Evidence has recently accumulated indicating that aromatase activity in the preoptic area is modulated in parallel by both slow (hours to days) genomic and rapid (minutes to hours) non-genomic mechanisms. We review here these two types of control mechanisms and their potential contribution to various aspects of brain physiology in quail. High levels of aromatase mRNA, protein and activity (AA) are present in the preoptic area of this species where the transcription of aromatase is controlled mainly by steroids. Estrogens acting in synergy with androgens play a key role in this control and both androgen and estrogen receptors (ER; alpha and beta subtypes) are present in the preoptic area even if they are not necessarily co-localized in the same cells as aromatase. Steroids have more pronounced effects on aromatase transcription in males than in females and this sex difference could be caused, in part, by a sexually differentiated expression of the steroid receptor coactivator 1 in this area. The changes in aromatase concentration presumably control seasonal variations as well as sex differences in brain estrogen production. Aromatase activity in hypothalamic homogenates is also rapidly (within minutes) down-regulated by exposure to conditions that enhance protein phosphorylation such as the presence of high concentrations of calcium, magnesium and ATP. Similarly, pharmacological manipulations such as treatment with thapsigargin or stimulation of various neurotransmitter receptors (alpha-amino-3-hydroxy-methyl-4-isoxazole propionic acid (AMPA), kainate, and N-methyl-d-aspartate (NMDA)) leading to enhanced intracellular calcium concentrations depress within minutes the aromatase activity measured in quail preoptic explants. The effects of receptor stimulation are presumably direct: electrophysiological data confirm the presence of these receptors in the membrane of aromatase-expressing cells. Inhibitors of protein kinases interfere with these processes andWestern blotting experiments on brain aromatase purified by immunoprecipitation confirm that the phosphorylations regulating aromatase activity directly affect the enzyme rather than another regulatory protein. Accordingly, several phosphorylation consensus sites are present on the deduced amino acid sequence of the recently cloned quail aromatase. Fast changes in the local availability of estrogens in the brain can thus be caused by aromatase phosphorylation so that estrogen could rapidly regulate neuronal physiology and behavior. The rapid as well as slower processes of local estrogen production in the brain thus match well with the genomic and non-genomic actions of steroids in the brain. These two processes potentially provide sufficient temporal variation in the bio-availability of estrogens to support the entire range of established effects for this steroid. [less ▲]

Detailed reference viewed: 34 (17 ULg)
Full Text
Peer Reviewed
See detailThe neuroendocrinology of reproductive behavior in Japanese quail
Balthazart, Jacques ULg; Baillien, Michelle; Charlier, Thierry ULg et al

in Domestic Animal Endocrinology (2003), 25

Sex steroid hormones such as testosterone have widespread effects on brain physiology and function but one of their best characterized effects arguably involves the activation of male sexual behavior ... [more ▼]

Sex steroid hormones such as testosterone have widespread effects on brain physiology and function but one of their best characterized effects arguably involves the activation of male sexual behavior. During the past 20 years we have investigated the testosterone control of male sexual behavior in an avian species, the Japanese quail (Coturnix japonica).We briefly reviewhere the main features and advantages of this species relating to the investigation of fundamental questions in the field of behavioral neuroendocrinology, a field that studies inter-relationship among hormones, brain and behavior. Special attention is given to the intracellular metabolism of testosterone, in particular its aromatization into an estrogen, which plays a critical limiting role in the mediation of the behavioral effects of testosterone. Brain aromatase activity is controlled by steroids which increase the transcription of the enzyme, but afferent inputs that affect the intraneuronal concentrations of calcium also appear to have a pronounced effect on the enzyme activity through rapid changes in its phosphorylation status. The physiological significance of these slowgenomic and rapid, presumably non-genomic, changes in brain aromatase activity are also briefly discussed. [less ▲]

Detailed reference viewed: 55 (16 ULg)