References of "BOURS, Vincent"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailModulating effect of COMT Val158Met polymorphism on interference resolution during a working memory task
Jaspar, Mathieu ULg; DIDEBERG, Vinciane ULg; Bours, Vincent ULg et al

in Brain & Cognition (in press)

Genetic variability related to the catechol-O-methyltransferase (COMT) gene has received increasing attention in the last 15 years, in particular as a potential modulator of the neural substrates ... [more ▼]

Genetic variability related to the catechol-O-methyltransferase (COMT) gene has received increasing attention in the last 15 years, in particular as a potential modulator of the neural substrates underlying inhibitory processes and updating in working memory (WM). In an event-related functional magnetic resonance imaging (fMRI) study, we administered a modified version of the Sternberg probe recency task (Sternberg, 1966) to 43 young healthy volunteers, varying the level of interference across successive items. The task was divided into two parts (high vs. low interference) to induce either proactive or reactive control processes. The participants were separated into three groups according to their COMT Val158Met genotype [Val/Val (VV); Val/Met (VM); Met/Met (MM)]. The general aim of the study was to determine whether COMT polymorphism has a modulating effect on the neural substrates of interference resolution during WM processing. Results indicate that interfering trials were associated with greater involvement of frontal cortices (bilateral medial frontal gyrus, left precentral and superior frontal gyri, right inferior frontal gyrus) in VV homozygous subjects (by comparison to Met allele carriers) only in the proactive condition of the task. In addition, analysis of peristimulus haemodynamic responses (PSTH) revealed that the genotype-related difference observed in the left SFG was specifically driven by a larger increase in activity from the storage to the recognition phase of the interfering trials in VV homozygous subjects. These results confirm the impact of COMT genotype on inhibitory processes during a WM task, with an advantage for Met allele carriers. Interestingly, this impact on frontal areas is present only when the level of interference is high, and especially during the transition from storage to recognition in the left superior frontal gyrus. [less ▲]

Detailed reference viewed: 38 (3 ULg)
Full Text
See detailA tale of two anomalies. A paternal duplication and a maternal deletion of 15q13
BULK, Saskia ULg; Decortis, Thierry ULg; Rondia, G et al

Poster (2015, March 06)

Detailed reference viewed: 8 (0 ULg)
Full Text
See detailDisease characteristics of patients with X-linked acrogigantism (X-LAG) syndrome
Daly, Adrian ULg; Lodish, MB; Trivellin, G et al

in Abstract book - ENDO 2015 (2015, March)

Detailed reference viewed: 5 (1 ULg)
Full Text
See detailX-Linked acro-gigantism (X-LAG) due to microduplications of chromosome Xq26 : A new disorder and implications for acromegaly
Trivellin, G; Daly, AF; Faucz, FR et al

in Abstract book - ENDO 2015 (2015, March)

Detailed reference viewed: 5 (1 ULg)
Full Text
See detailLe cancer thyroïdien papillaire familial (FNMTC): études cliniques et génétiques chez 8 familles
VALDES SOCIN, Hernan Gonzalo ULg; Daly, Adrian ULg; Burlacu, C et al

in Abstract book - Annales d'Endocrinologie : 31ème Congrès de la Société Française d'Endocrinologie, Lyon 5-8 novembre 2014 (2014, October)

Detailed reference viewed: 22 (4 ULg)
Full Text
Peer Reviewed
See detailNeoadjuvant chemotherapy in breast cancer induces miR-34a and miR-122 expression
FRERES, Pierre ULg; JOSSE, Claire ULg; Bovy, Nicolas ULg et al

in Journal of Cellular Physiology (2014)

Circulating microRNAs (miRNAs) have been extensively studied in cancer as biomarkers but little is known regarding the influence of anti-cancer drugs on their expression levels. In this article, we ... [more ▼]

Circulating microRNAs (miRNAs) have been extensively studied in cancer as biomarkers but little is known regarding the influence of anti-cancer drugs on their expression levels. In this article, we describe the modifications of circulating miRNAs profile after neoadjuvant chemotherapy (NAC) for breast cancer. The expression of 188 circulating miRNAs was assessed in the plasma of 25 patients before and after NAC by RT-qPCR. Two miRNAs, miR- 34a and miR-122, that were significantly increased after NAC, were measured in tumor tissue before and after chemotherapy in 7 patients with pathological partial response (pPR) to NAC. These 2 chemotherapy-induced miRNAs were further studied in the plasma of 22 patients with adjuvant chemotherapy (AC) as well as in 12 patients who did not receive any chemotherapy. Twenty-five plasma miRNAs were modified by NAC. Among these miRNAs, miR-34a and miR-122 were highly upregulated, notably in pPR patients with aggressive breast cancer. Furthermore, miR-34a level was elevated in the remaining tumor tissue after NAC treatment. Studying the kinetics of circulating miR-34a and miR-122 expression during NAC revealed that their levels were especially increased after anthracycline-based chemotherapy. Comparisons of the plasma miRNA profiles after NAC and AC suggested that chemotherapy-induced miRNAs originated from both tumoral and non-tumoral compartments. This study is the first to demonstrate that NAC specifically induces miRNA expression in plasma and tumor tissue, which might be involved in the anti-tumor effects of chemotherapy in breast cancer patients. [less ▲]

Detailed reference viewed: 67 (26 ULg)
Full Text
Peer Reviewed
See detailGigantism and Acromegaly Due to Xq26 Microduplications and GPR101 Mutation.
Trivellin, Giampaolo; Daly, Adrian ULg; Faucz, Fabio R. et al

in The New England journal of medicine (2014)

Background Increased secretion of growth hormone leads to gigantism in children and acromegaly in adults; the genetic causes of gigantism and acromegaly are poorly understood. Methods We performed ... [more ▼]

Background Increased secretion of growth hormone leads to gigantism in children and acromegaly in adults; the genetic causes of gigantism and acromegaly are poorly understood. Methods We performed clinical and genetic studies of samples obtained from 43 patients with gigantism and then sequenced an implicated gene in samples from 248 patients with acromegaly. Results We observed microduplication on chromosome Xq26.3 in samples from 13 patients with gigantism; of these samples, 4 were obtained from members of two unrelated kindreds, and 9 were from patients with sporadic cases. All the patients had disease onset during early childhood. Of the patients with gigantism who did not carry an Xq26.3 microduplication, none presented before the age of 5 years. Genomic characterization of the Xq26.3 region suggests that the microduplications are generated during chromosome replication and that they contain four protein-coding genes. Only one of these genes, GPR101, which encodes a G-protein-coupled receptor, was overexpressed in patients' pituitary lesions. We identified a recurrent GPR101 mutation (p.E308D) in 11 of 248 patients with acromegaly, with the mutation found mostly in tumors. When the mutation was transfected into rat GH3 cells, it led to increased release of growth hormone and proliferation of growth hormone-producing cells. Conclusions We describe a pediatric disorder (which we have termed X-linked acrogigantism [X-LAG]) that is caused by an Xq26.3 genomic duplication and is characterized by early-onset gigantism resulting from an excess of growth hormone. Duplication of GPR101 probably causes X-LAG. We also found a recurrent mutation in GPR101 in some adults with acromegaly. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others.). [less ▲]

Detailed reference viewed: 32 (21 ULg)
Full Text
Peer Reviewed
See detailInfluence of COMT Genotype on Antero-Posterior Cortical Functional Connectivity Underlying Interference Resolution
Jaspar, Mathieu ULg; Manard, Marine ULg; DIDEBERG, Vinciane ULg et al

in Cerebral Cortex (2014)

Genetic variability related to the catechol-O-methyltransferase (COMT) gene (Val158Met) has received increasing attention as a possible modulator of executive functioning and its neural correlates ... [more ▼]

Genetic variability related to the catechol-O-methyltransferase (COMT) gene (Val158Met) has received increasing attention as a possible modulator of executive functioning and its neural correlates. However, this attention has generally centred on the prefrontal cortices because of the well-known direct impact of COMT enzyme on these cerebral regions. In this study, we were interested in the modulating effect of COMT genotype on anterior and posterior brain areas underlying interference resolution during a Stroop task. More specifically, we were interested in the functional connectivity between the right inferior frontal operculum (IFop), an area frequently associated with inhibitory efficiency, and posterior brain regions involved in reading/naming processes (the two main non-executive determinants of the Stroop effect). The Stroop task was administered during fMRI scanning to three groups of 15 young adults divided according to their COMT Val158Met genotype [Val/Val (VV), Val/Met (VM) and Met/Met (MM)]. Results indicate greater activity in the right IFop and the left middle temporal gyrus (MTG) in homozygous VV individuals than in Met allele carriers. In addition, the VV group exhibited stronger positive functional connectivity between these two brain regions and stronger negative connectivity between the right IFop and left lingual gyrus. These results confirm the impact of COMT genotype on frontal function. They also strongly suggest that differences in frontal activity influence posterior brain regions related to a non-executive component of the task. Especially, changes in functional connectivity between anterior and posterior brain areas might correspond to compensatory processes for performing the task efficiently when the available dopamine level is low. [less ▲]

Detailed reference viewed: 41 (17 ULg)
Full Text
Peer Reviewed
See detailFolinic acid treatment for schizophrenia associated with folate receptor autoantibodies.
RAMAEKERS, Vincent ULg; Thony, B.; Sequeira, J. M. et al

in Molecular genetics and metabolism (2014), 113(4), 307-14

BACKGROUND: Auto-antibodies against folate receptor alpha (FRalpha) at the choroid plexus that block N(5)-methyltetrahydrofolate (MTHF) transfer to the brain were identified in catatonic schizophrenia ... [more ▼]

BACKGROUND: Auto-antibodies against folate receptor alpha (FRalpha) at the choroid plexus that block N(5)-methyltetrahydrofolate (MTHF) transfer to the brain were identified in catatonic schizophrenia. Acoustic hallucinations disappeared following folinic acid treatment. Folate transport to the CNS prevents homocysteine accumulation and delivers one-carbon units for methyl-transfer reactions and synthesis of purines. The guanosine derivative tetrahydrobiopterin acts as common co-factor for the enzymes producing dopamine, serotonin and nitric oxide. METHODS: Our study selected patients with schizophrenia unresponsive to conventional treatment. Serum from these patients with normal plasma homocysteine, folate and vitamin B12 was tested for FR autoantibodies of the blocking type on serial samples each week. Spinal fluid was analyzed for MTHF and the metabolites of pterins, dopamine and serotonin. The clinical response to folinic acid treatment was evaluated. RESULTS: Fifteen of 18 patients (83.3%) had positive serum FR auto-antibodies compared to only 1 in 30 controls (3.3%) (chi(2)=21.6; p<0.0001). FRalpha antibody titers in patients fluctuated over time varying between negative and high titers, modulating folate flux to the CNS, which explained low CSF folate values in 6 and normal values in 7 patients. The mean+/-SD for CSF MTHF was diminished compared to previously established controls (t-test: 3.90; p=0.0002). A positive linear correlation existed between CSF MTHF and biopterin levels. CSF dopamine and serotonin metabolites were low or in the lower normal range. Administration of folinic acid (0.3-1mg/kg/day) to 7 participating patients during at least six months resulted in clinical improvement. CONCLUSION: Assessment of FR auto-antibodies in serum is recommended for schizophrenic patients. Clinical negative or positive symptoms are speculated to be influenced by the level and evolution of FRalpha antibody titers which determine folate flux to the brain with up- or down-regulation of brain folate intermediates linked to metabolic processes affecting homocysteine levels, synthesis of tetrahydrobiopterin and neurotransmitters. Folinic acid intervention appears to stabilize the disease process. [less ▲]

Detailed reference viewed: 24 (3 ULg)
Full Text
Peer Reviewed
See detailConnexin 30 expression inhibits growth of human malignant gliomas but protects them against radiation therapy.
Artesi, Maria ULg; Kroonen, Jerome; Bredel, Markus et al

in Neuro-oncology (2014)

BACKGROUND: Glioblastomas remain ominous tumors that almost invariably escape treatment. Connexins are a family of transmembrane, gap junction-forming proteins, some members of which were reported to act ... [more ▼]

BACKGROUND: Glioblastomas remain ominous tumors that almost invariably escape treatment. Connexins are a family of transmembrane, gap junction-forming proteins, some members of which were reported to act as tumor suppressors and to modulate cellular metabolism in response to cytotoxic stress. METHODS: We analyzed the copy number and expression of the connexin (Cx)30 gene gap junction beta-6 (GJB6), as well as of its protein immunoreactivity in several public and proprietary repositories of glioblastomas, and their influence on patient survival. We evaluated the effect of the expression of this gap junction protein on the growth, DNA repair and energy metabolism, and treatment resistance of these tumors. RESULTS: The GJB6 gene was deleted in 25.8% of 751 analyzed tumors and mutated in 15.8% of 158 tumors. Cx30 immunoreactivity was absent in 28.9% of 145 tumors. Restoration of Cx30 expression in human glioblastoma cells reduced their growth in vitro and as xenografts in the striatum of immunodeficient mice. Cx30 immunoreactivity was, however, found to adversely affect survival in 2 independent retrospective cohorts of glioblastoma patients. Cx30 was found in clonogenic assays to protect glioblastoma cells against radiation-induced mortality and to decrease radiation-induced DNA damage. This radioprotection correlated with a heat shock protein 90-dependent mitochondrial translocation of Cx30 following radiation and an improved ATP production following this genotoxic stress. CONCLUSION: These results underline the complex relationship between potential tumor suppressors and treatment resistance in glioblastomas and single out GJB6/Cx30 as a potential biomarker and target for therapeutic intervention in these tumors. [less ▲]

Detailed reference viewed: 15 (6 ULg)
Full Text
Peer Reviewed
See detailReproduction, smell, and neurodevelopmental disorders: genetic defects in different hypogonadotropic hypogonadal syndromes.
VALDES SOCIN, Hernan Gonzalo ULg; Rubio Almanza, Matilde; Tome Fernandez-Ladreda, Mariana et al

in Frontiers in endocrinology (2014), 5

The neuroendocrine control of reproduction in mammals is governed by a neural hypothalamic network of nearly 1500 gonadotropin-releasing hormone (GnRH) secreting neurons that modulate the activity of the ... [more ▼]

The neuroendocrine control of reproduction in mammals is governed by a neural hypothalamic network of nearly 1500 gonadotropin-releasing hormone (GnRH) secreting neurons that modulate the activity of the reproductive axis across life. Congenital hypogonadotropic hypogonadism (HH) is a clinical syndrome that is characterized by partial or complete pubertal failure. HH may result from inadequate hypothalamic GnRH axis activation, or a failure of pituitary gonadotropin secretion/effects. In man, several genes that participate in olfactory and GnRH neuronal migration are thought to interact during the embryonic life. A growing number of mutations in different genes are responsible for congenital HH. Based on the presence or absence of olfaction dysfunction, HH is divided in two syndromes: HH with olfactory alterations [Kallmann syndrome (KS)] and idiopathic hypogonadotropic hypogonadism (IHH) with normal smell (normosmic IHH). KS is a heterogeneous disorder affecting 1 in 5000 males, with a three to fivefold of males over females. KS is associated with mutations in KAL1, FGFR1/FGF8, FGF17, IL17RD, PROK2/PROKR2, NELF, CHD7, HS6ST1, FLRT3, SPRY4, DUSP6, SEMA3A, NELF, and WDR11 genes that are related to defects in neuronal migration. These reproductive and olfactory deficits include a variable non-reproductive phenotype, including sensorineural deafness, coloboma, bimanual synkinesis, craniofacial abnormalities, and/or renal agenesis. Interestingly, defects in PROKR2, FGFR1, FGF8, CHD7, DUSP6, and WDR11 genes are also associated with normosmic IHH, whereas mutations in KISS1/KISSR, TAC3/TACR3, GNRH1/GNRHR, LEP/LEPR, HESX1, FSHB, and LHB are only present in patients with normosmic IHH. In this paper, we summarize the reproductive, neurodevelopmental, and genetic aspects of HH in human pathology. [less ▲]

Detailed reference viewed: 34 (13 ULg)
Full Text
Peer Reviewed
See detailReproduction, smell, and neurodevelopmental disorders: genetic defects in different hypogonadotropic hypogonadal syndromes.
VALDES SOCIN, Hernan Gonzalo ULg; Rubio Almanza, Matilde; Tome Fernandez-Ladreda, Mariana et al

in Frontiers in endocrinology (2014), 5

The neuroendocrine control of reproduction in mammals is governed by a neural hypothalamic network of nearly 1500 gonadotropin-releasing hormone (GnRH) secreting neurons that modulate the activity of the ... [more ▼]

The neuroendocrine control of reproduction in mammals is governed by a neural hypothalamic network of nearly 1500 gonadotropin-releasing hormone (GnRH) secreting neurons that modulate the activity of the reproductive axis across life. Congenital hypogonadotropic hypogonadism (HH) is a clinical syndrome that is characterized by partial or complete pubertal failure. HH may result from inadequate hypothalamic GnRH axis activation, or a failure of pituitary gonadotropin secretion/effects. In man, several genes that participate in olfactory and GnRH neuronal migration are thought to interact during the embryonic life. A growing number of mutations in different genes are responsible for congenital HH. Based on the presence or absence of olfaction dysfunction, HH is divided in two syndromes: HH with olfactory alterations [Kallmann syndrome (KS)] and idiopathic hypogonadotropic hypogonadism (IHH) with normal smell (normosmic IHH). KS is a heterogeneous disorder affecting 1 in 5000 males, with a three to fivefold of males over females. KS is associated with mutations in KAL1, FGFR1/FGF8, FGF17, IL17RD, PROK2/PROKR2, NELF, CHD7, HS6ST1, FLRT3, SPRY4, DUSP6, SEMA3A, NELF, and WDR11 genes that are related to defects in neuronal migration. These reproductive and olfactory deficits include a variable non-reproductive phenotype, including sensorineural deafness, coloboma, bimanual synkinesis, craniofacial abnormalities, and/or renal agenesis. Interestingly, defects in PROKR2, FGFR1, FGF8, CHD7, DUSP6, and WDR11 genes are also associated with normosmic IHH, whereas mutations in KISS1/KISSR, TAC3/TACR3, GNRH1/GNRHR, LEP/LEPR, HESX1, FSHB, and LHB are only present in patients with normosmic IHH. In this paper, we summarize the reproductive, neurodevelopmental, and genetic aspects of HH in human pathology. [less ▲]

Detailed reference viewed: 34 (13 ULg)
Full Text
Peer Reviewed
See detailArray-CGH analysis in Rwandan patients presenting development delay/intellectual disability with multiple congenital anomalies.
Uwineza, Annette; CABERG, Jean-Hubert ULg; Hitayezu, Janvier et al

in BMC medical genetics (2014), 15(1), 79

BACKGROUND: Array-CGH is considered as the first-tier investigation used to identify copy number variations. Right now, there is no available data about the genetic etiology of patients with development ... [more ▼]

BACKGROUND: Array-CGH is considered as the first-tier investigation used to identify copy number variations. Right now, there is no available data about the genetic etiology of patients with development delay/intellectual disability and congenital malformation in East Africa. METHODS: Array comparative genomic hybridization was performed in 50 Rwandan patients with development delay/intellectual disability and multiple congenital abnormalities, using the Agilent's 180 K microarray platform. RESULTS: Fourteen patients (28%) had a global development delay whereas 36 (72%) patients presented intellectual disability. All patients presented multiple congenital abnormalities. Clinically significant copy number variations were found in 13 patients (26%). Size of CNVs ranged from 0,9 Mb to 34 Mb. Six patients had CNVs associated with known syndromes, whereas 7 patients presented rare genomic imbalances. CONCLUSION: This study showed that CNVs are present in African population and show the importance to implement genetic testing in East-African countries. [less ▲]

Detailed reference viewed: 17 (9 ULg)
Full Text
Peer Reviewed
See detailTwo novel mutations of the CLDN16 gene cause familial hypomagnesaemia with hypercalciuria and nephrocalcinosis
Hanssen, Oriane ULg; CASTERMANS, Emilie ULg; BOVY, Christophe ULg et al

in Clinical Kidney Journal (2014), 7

Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis is an autosomal-recessive disease caused by mutations in the CLDN16 or CLDN19 genes, which encode tight junction-associated proteins ... [more ▼]

Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis is an autosomal-recessive disease caused by mutations in the CLDN16 or CLDN19 genes, which encode tight junction-associated proteins, claudin-16 and -19. The resultant tubulopathy leads to urinary loss of Mg2+ and Ca2+, with subsequent nephrocalcinosis and end-stage renal disease (ESRD). An 18-year-old boy presented with chronic kidney disease and proteinuria, as well as hypomagnesaemia, hypercalciuria and nephrocalcinosis. A kidney biopsy revealed tubular atrophy, interstitial fibrosis and segmental sclerosis of some glomeruli. Two novel mutations in the CLDN16 gene were identified: c.340C>T (nonsense) and c.427+5G>A (splice site). The patient reached ESRD at 23 and benefited from kidney transplantation. [less ▲]

Detailed reference viewed: 18 (12 ULg)
Full Text
Peer Reviewed
See detailModulating effect of COMT genotype on the brain regions underlying proactive control process during inhibition
Jaspar, Mathieu ULg; Genon, Sarah ULg; Muto, Vincenzo ULg et al

in Cortex : A Journal Devoted to the Study of the Nervous System & Behavior (2014), 50

Introduction. Genetic variability related to the catechol-O-methyltransferase (COMT) gene (Val158Met polymorphism) has received increasing attention as a possible modulator of cognitive control functions ... [more ▼]

Introduction. Genetic variability related to the catechol-O-methyltransferase (COMT) gene (Val158Met polymorphism) has received increasing attention as a possible modulator of cognitive control functions. Methods. In an event-related fMRI study, a modified version of the Stroop task was administered to three groups of 15 young adults according to their COMT Val158Met genotype [Val/Val (VV), Val/Met (VM) and Met/Met (MM)]. Based on the theory of dual mechanisms of control (Braver, et al., 2007), the Stroop task has been built to induce proactive or reactive control processes according to the task context. Results. Behavioral results did not show any significant group differences for reaction times but Val allele carriers individuals are less accurate in the processing of incongruent items. fMRI results revealed that proactive control is specifically associated with increased activity in the anterior cingulate cortex (ACC) in carriers of the Met allele, while increased activity is observed in the middle frontal gyrus (MFG) in carriers of the Val allele. Conclusion. These observations, in keeping with a higher cortical dopamine level in MM individuals, support the hypothesis of a COMT Val158Met genotype modulation of the brain regions underlying proactive control, especially in frontal areas as suggested by Braver et al. [less ▲]

Detailed reference viewed: 78 (25 ULg)
Full Text
Peer Reviewed
See detailIdentification of a microRNA landscape targeting the PI3K/Akt signaling pathway in inflammation-induced colorectal carcinogenesis
JOSSE, Claire ULg; Bouznad, Nassim ULg; Geurts, Pierre ULg et al

in American Journal of Physiology - Gastrointestinal and Liver Physiology (2014), 306

Inflammation can contribute to tumor formation; however, markers that predict progression are still lacking. In the present study, the well-established azoxymethane (AOM)/dextran sulfate sodium (DSS ... [more ▼]

Inflammation can contribute to tumor formation; however, markers that predict progression are still lacking. In the present study, the well-established azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mouse model of colitis-associated cancer was used to analyze microRNA (miRNA) modulation accompanying inflammation-induced tumor development and to determine whether inflammation-triggered miRNA alterations affect the expression of genes or pathways involved in cancer. A miRNA microarray experiment was performed to establish miRNA expression profiles in mouse colon at early and late time points during inflammation and/or tumor growth. Chronic inflammation and carcinogenesis were associated with distinct changes in miRNA expression. Nevertheless, prediction algorithms of miRNA-mRNA interactions and computational analyses based on ranked miRNA lists consistently identified putative target genes that play essential roles in tumor growth or that belong to key carcinogenesis-related signaling pathways. We identified PI3K/Akt and the insulin growth factor-1 (IGF-1) as major pathways being affected in the AOM/DSS model. DSS-induced chronic inflammation downregulates miR-133a and miR-143/145, which is reportedly associated with human colorectal cancer and PI3K/Akt activation. Accordingly, conditioned medium from inflammatory cells decreases the expression of these miRNA in colorectal adenocarcinoma Caco-2 cells. Overexpression of miR-223, one of the main miRNA showing strong upregulation during AOM/DSS tumor growth, inhibited Akt phosphorylation and IGF-1R expression in these cells. Cell sorting from mouse colons delineated distinct miRNA expression patterns in epithelial and myeloid cells during the periods preceding and spanning tumor growth. Hence, cell-type-specific miRNA dysregulation and subsequent PI3K/Akt activation may be involved in the transition from intestinal inflammation to cancer. [less ▲]

Detailed reference viewed: 63 (9 ULg)