References of "Aumont-Nicaise, Magali"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEnzymatic characterization of recombinant alpha-amylase in the Drosophila melanogaster species subgroup: is there an effect of specialization on digestive enzyme?
Commin, Céline; Aumont-Nicaise, Magali; Claisse, Gaëlle et al

in Genes & Genetic Systems (in press)

Detailed reference viewed: 23 (1 ULg)
See detailNanobodies as structural probes to investigate the mechanism of fibril formation by the amyloidogenic variants of human lysozyme
Dumont, Janice ULg; pardon, Els; Aumont-Nicaise, Magali et al

Poster (2012, June)

Six variants of human lysozyme (single-point mutatants I56T, F57I, W64R, D67H and double mutants F57I/T70N, W112R/T70N) are associated with a hereditary non-neuropathic systemic amyloidosis. These ... [more ▼]

Six variants of human lysozyme (single-point mutatants I56T, F57I, W64R, D67H and double mutants F57I/T70N, W112R/T70N) are associated with a hereditary non-neuropathic systemic amyloidosis. These proteins form extracellular amyloid fibrils that deposit in a wide range of tissues and organs such as liver, spleen and kidneys where they cause damages [1]. It was shown that the D67H and I56T mutations cause a loss in stability and more particularly a loss of global cooperativity of protein [1]. Consequently, under physiologically relevant conditions, these variants can transiently populate a partially unfolded state in which the beta-domain and the C-helix are cooperatively unfolded while the rest of the protein remains native like [1]. The formation of intermolecular interactions between the regions that are unfolded in this intermediate state is likely to be a fundamental trigger of the aggregation process that ultimately leads to the formation and deposition of fibrils in tissues. We have also shown that the binding of three variable domain of camelid antibodies (VHHs) - raised against the wild type human lysozyme inhibit in vitro the formation of amyloid fibrils by the lysozyme variants. These three VHHs bind on different regions of lysozyme and act as amyloid fibril inhibitor through different mechanisms [2, 3, and unpublished results]. In the present work, sixteen new VHHs specific of human lysozyme have been generated. Competition experiments have shown that they bind to five non-overlapping epitopes. We have demonstrated that five of these VHHs are able to bind lysozyme in conditions used for amyloid fibril formation, and interestingly two of them recognize two epitopes that are different from those of the three VHHs previously characterized [2, 3, and unpublished results]. The effects of these new VHHs on the properties of lysozyme variants such as stability, cooperativity and aggregation will be discussed. [1] Dumoulin, M., J.R. Kumita, and C.M. Dobson, Normal and aberrant biological self-assembly: Insights from studies of human lysozyme and its amyloidogenic variants. Acc Chem Res, 2006, 39(9), 603-610. [2] Dumoulin, M., et al., A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature, 2003, 424, 783-788. [3] Chan, P.H., et al., Engineering a camelid antibody fragment that binds to the active site of human lysozyme and inhibits its conversion into amyloid fibrils. Biochemistry, 2008, 47, 11041-11054. [less ▲]

Detailed reference viewed: 66 (9 ULg)