References of "Arpigny, Claude"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailToward a Unique Nitrogen Isotopic Ratio in Cometary Ices
Rousselot, Philippe; Pirali, Olivier; Jehin, Emmanuel ULg et al

in Astrophysical Journal Letters (2014), 780

Determination of the nitrogen isotopic ratios in different bodies of the solar system provides important information regarding the solar system's origin. We unambiguously identified emission lines in ... [more ▼]

Determination of the nitrogen isotopic ratios in different bodies of the solar system provides important information regarding the solar system's origin. We unambiguously identified emission lines in comets due to the [SUP]15[/SUP]NH[SUB]2[/SUB] radical produced by the photodissociation of [SUP]15[/SUP]NH[SUB]3[/SUB]. Analysis of our data has permitted us to measure the [SUP]14[/SUP]N/[SUP]15[/SUP]N isotopic ratio in comets for a molecule carrying the amine (-NH) functional group. This ratio, within the error, appears similar to that measured in comets in the HCN molecule and the CN radical, and lower than the protosolar value, suggesting that N[SUB]2[/SUB] and NH[SUB]3[/SUB] result from the separation of nitrogen into two distinct reservoirs in the solar nebula. This ratio also appears similar to that measured in Titan's atmospheric N[SUB]2[/SUB], supporting the hypothesis that, if the latter is representative of its primordial value in NH[SUB]3[/SUB], these bodies were assembled from building blocks sharing a common formation location. [less ▲]

Detailed reference viewed: 22 (6 ULg)
Full Text
Peer Reviewed
See detailOrtho-to-para Abundance Ratio (OPR) of Ammonia in 15 Comets: OPRs of Ammonia Versus 14N/15N Ratios in CN
Shinnaka, Yoshiharu; Kawakita, Hideyo; Kobayashi, Hitomi et al

in Astrophysical Journal (2011), 729

The ortho-to-para abundance ratio (OPR) of cometary molecules is considered to be one of the primordial characteristics of cometary ices. We present OPRs of ammonia (NH[SUB]3[/SUB]) in 15 comets based on ... [more ▼]

The ortho-to-para abundance ratio (OPR) of cometary molecules is considered to be one of the primordial characteristics of cometary ices. We present OPRs of ammonia (NH[SUB]3[/SUB]) in 15 comets based on optical high-dispersion spectroscopic observations of NH[SUB]2[/SUB], which is a photodissociation product of ammonia in the gaseous coma. The observations were mainly carried out with the VLT/UVES. The OPR of ammonia is estimated from the OPR of NH[SUB]2[/SUB] based on the observations of the NH[SUB]2[/SUB] (0, 9, 0) vibronic band. The absorption lines by the telluric atmosphere are corrected and the cometary C[SUB]2[/SUB] emission lines blended with NH[SUB]2[/SUB] lines are removed in our analysis. The ammonia OPRs show a cluster between 1.1 and 1.2 (this corresponds to a nuclear spin temperature of ~30 K) for all comets in our sample except for 73P/Schwassmann-Wachmann 3 (73P/SW3). Comet 73P/SW3 (both B- and C-fragments) shows the OPR of ammonia consistent with nuclear spin statistical weight ratio (1.0) that indicates a high-temperature limit as nuclear spin temperature. We compared the ammonia OPRs with other properties ([SUP]14[/SUP]N/[SUP]15[/SUP]N ratios in CN, D/H ratios of water, and mixing ratios of volatiles). Comet 73P/SW3 is clearly different from the other comets in the plot of ammonia OPRs versus [SUP]14[/SUP]N/[SUP]15[/SUP]N ratios in CN. The ammonia OPRs of 1.0 and lower [SUP]15[/SUP]N-fractionation of CN in comet 73P/SW3 imply that icy materials in this comet formed under warmer conditions than other comets. Comets may be classified into two groups in the plot of ammonia OPRs against [SUP]14[/SUP]N/[SUP]15[/SUP]N ratios in CN. [less ▲]

Detailed reference viewed: 24 (5 ULg)
Full Text
See detailOPRs of Ammonia versus 14N/15N Ratios in CN in 15 Comets
Shinnaka, Yoshiharu; Kawakita, H.; Kobayashi, H. et al

in Bulletin of the American Astronomical Society (2010, October 01), 42

The solar system was formed from interstellar matter 4.6 Gyrs ago and comets are considered as remnants of icy planetesimals formed in the early solar system. One of interesting primordial characters of ... [more ▼]

The solar system was formed from interstellar matter 4.6 Gyrs ago and comets are considered as remnants of icy planetesimals formed in the early solar system. One of interesting primordial characters of cometary ice is an ortho-to-para abundance ratio (OPR) of molecules such as H2O, NH3, etc. The OPR probably indicates the molecular formation temperatures in the solar nebula or in the pre-solar molecular cloud. We determined the OPRs of ammonia by using the high dispersion optical spectra of NH2 in 15 comets: C/1995 O1 (Hale-Bopp), C/1999 S4 (LINEAR), C/2001 A2 (LINEAR), C/2000 WM1 (LINEAR), 153P/Ikeya-Zhang, C/2002 V1 (NEAT), C/2002 X5 (Kudo-Fujikawa), C/2002 Y1 (Juels-Holvorcem), C/2001 Q4 (NEAT), C/2002 T7 (LINEAR), C/2003 K4 (LINEAR), 8P/Tuttle, 88P/Howell, 9P/Tempel 1, and 73P-B and -C/Schwassmann-Wachmann 3. The observations were mainly carried out by the Ultraviolet and Visual Echelle Spectrograph (UVES) mounted on the Very Large Telescope (VLT) in Chile. Other telescopes/instruments were also used in some cases. The OPRs of ammonia are determined from OPRs of NH2 (0,9,0) ro-vibronic band around 600 nm. Although absorption lines (by the telluric atmosphere) and cometary C2 emission lines blended affected to NH2 emission lines in this region, we removed them in our analysis. The determined OPRs of ammonia clustered around 30K but not in the cases of 73P-B and -C. This situation is very similar to that of 14N/15N ratios in CN (i.e., 73P-B and -C are quite peculiar relative to other comets). We discuss about the relationship between the OPRs of ammonia and 14N/15N ratios in CN in these 15 comets. Our results indicate the formation of materials at relatively higher temperatures for 73P-B and -C than other comets. [less ▲]

Detailed reference viewed: 17 (1 ULg)
Full Text
Peer Reviewed
See detailHigh-dispersion infrared spectroscopic observations of comet 8P/Tuttle with VLT/CRIRES
Kobayashi, H.; Bockelée-Morvan, D.; Kawakita, H. et al

in Astronomy and Astrophysics (2010), 509

We report on the composition of the Halley-family comet (HFC) 8P/Tuttle investigated with high-dispersion near-infrared spectroscopic observations. The observations were carried out at the ESO VLT (Very ... [more ▼]

We report on the composition of the Halley-family comet (HFC) 8P/Tuttle investigated with high-dispersion near-infrared spectroscopic observations. The observations were carried out at the ESO VLT (Very Large Telescope) with the CRIRES instrument as part of a multi-wavelength observation campaign of 8P/Tuttle performed in late January and early February 2008. Radar observations suggested that 8P/Tuttle is a contact binary, and it was proposed that these components might be heterogeneous in chemistry. We determined mixing ratios of organic volatiles with respect to H[SUB]2[/SUB]O and found that mixing ratios were consistent with previous near infrared spectroscopic observations obtained in late December 2007 and in late January 2008. It has been suggested that because 8P/Tuttle is a contact binary, it might be chemically heterogeneous. However, we find no evidence for chemical heterogeneity within the nucleus of 8P/Tuttle. We also compared the mixing ratios of organic molecules in 8P/Tuttle with those of both other HFCs and long period comets (LPCs) and found that HCN, C[SUB]2[/SUB]H[SUB]2[/SUB], and C[SUB]2[/SUB]H[SUB]6[/SUB] are depleted whereas CH[SUB]4[/SUB] and CH[SUB]3[/SUB]OH have normal abundances. This may indicate that 8P/Tuttle was formed in a different region of the early solar nebula than other HFCs and LPCs. We estimated the conversion efficiency from C[SUB]2[/SUB]H[SUB]2[/SUB] to C[SUB]2[/SUB]H[SUB]6[/SUB] by hydrogen addition reactions on cold grains by employing the C[SUB]2[/SUB]H[SUB]6[/SUB]/(C[SUB]2[/SUB]H[SUB]6[/SUB]+C[SUB]2[/SUB]H[SUB]2[/SUB]) ratio. The C[SUB]2[/SUB]H[SUB]6[/SUB]/(C[SUB]2[/SUB]H[SUB]6[/SUB]+C[SUB]2[/SUB]H[SUB]2[/SUB]) ratio in 8P/Tuttle is consistent with the ratios found in other HFCs and LPCs within the error bars. We also discuss the source of C[SUB]2[/SUB] and CN based on our observations and conclude that the abundances of C[SUB]2[/SUB]H[SUB]2[/SUB] and C[SUB]2[/SUB]H[SUB]6[/SUB] are insufficient to explain the C[SUB]2[/SUB] abundances in comet 8P/Tuttle and that the abundance of HCN is insufficient to explain the CN abundances in the comet, so at least one additional parent is needed for each species, as pointed out in previous study. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Prog. 080.C-0615 and 280.C-5053).We regret to note the death of Dr. J. -M. Zucconi in 2009 May. [less ▲]

Detailed reference viewed: 54 (15 ULg)
Full Text
Peer Reviewed
See detailNew constraints on the delivery of cometary water and nitrogen to Earth from the 15N/14N isotopic ratio
Hutsemekers, Damien ULg; Manfroid, Jean ULg; Jehin, Emmanuel ULg et al

in Icarus: International Journal of Solar System Studies (2009), 204

New independent constraints on the amount of water delivered to Earth by comets are derived using the [SUP]15[/SUP]N/[SUP]14[/SUP]N isotopic ratio, measured to be roughly twice as high in cometary CN and ... [more ▼]

New independent constraints on the amount of water delivered to Earth by comets are derived using the [SUP]15[/SUP]N/[SUP]14[/SUP]N isotopic ratio, measured to be roughly twice as high in cometary CN and HCN as in the present Earth. Under reasonable assumptions, we find that no more than a few percent of Earthâ s water can be attributed to comets, in agreement with the constraints derived from D/H. Our results also suggest that a significant part of Earthâ s atmospheric nitrogen might come from comets. Since the [SUP]15[/SUP]N/[SUP]14[/SUP]N isotopic ratio is not different in Oort-cloud and Kuiper-belt comets, our estimates apply to the contribution of both types of objects. [less ▲]

Detailed reference viewed: 17 (4 ULg)
Full Text
See detailRevisit to Nuclear Spin Temperature of Ammonia in Comets
Shinnaka, Yoshiharu; Jehin, Emmanuel ULg; Manfroid, Jean ULg et al

in Bulletin of the American Astronomical Society (2009, September 01), 41

Comets had formed from dust and icy materials in the solar nebula 4.6 Gyrs ago. The cometary materials are considered as the most pristine in the solar system and both dust grains and icy materials in ... [more ▼]

Comets had formed from dust and icy materials in the solar nebula 4.6 Gyrs ago. The cometary materials are considered as the most pristine in the solar system and both dust grains and icy materials in comets have been used to investigate the formation conditions of the solar system. One of interesting primordial characters is a nuclear spin temperature (related to an ortho-to-para ratio; OPR) of cometary molecules such as H2O, NH3, etc. The nuclear spin temperatures probably reflect the molecular formation temperatures in the solar nebula (or in the presolar molecular cloud). In this work, we analyzed high dispersion optical spectra of C/2001 Q4 (NEAT), C/2000 WM1 (LINEAR), 88P/Howell, fragments B and C of 73P/Schwassmann-Wachmann 3 and 8P/Tuttle. Our observations were performed by the Ultraviolet and Visual Echelle Spectrograph (UVES) mounted on the Very Large Telescope (VLT) in Chile and the High Dispersion Spectrograph (HDS) mounted on the Subaru telescope in Hawaii. We determined nuclear spin temperatures of NH3 in five comets based on optical spectra of NH2. The nuclear spin temperatures of NH3 can be obtained from OPRs of NH2. We used the (0,9,0) ro-vibronic band at 610nm in this work. Absorption lines (by the telluric atmosphere) and cometary C2 emission lines blended with NH2 emission lines were also taken into account in our analysis. These lines have never been considered in previous studies. The origin of icy materials in the five comets will be discussed based on these results. [less ▲]

Detailed reference viewed: 33 (5 ULg)
Full Text
Peer Reviewed
See detailIsotopic Ratios in Comets: Status and Perspectives
Jehin, Emmanuel ULg; Manfroid, Jean ULg; Hutsemekers, Damien ULg et al

in Earth, Moon, and Planets (2009), 105

Isotopic abundance ratios are excellently suited to probe the origin of solar system matter. We review the recent measurements of the isotopic ratios of the light elements (D/H, [SUP]12[/SUP]C/[SUP]13 ... [more ▼]

Isotopic abundance ratios are excellently suited to probe the origin of solar system matter. We review the recent measurements of the isotopic ratios of the light elements (D/H, [SUP]12[/SUP]C/[SUP]13[/SUP]C, [SUP]16[/SUP]O/[SUP]18[/SUP]O, [SUP]14[/SUP]N/[SUP]15[/SUP]N, [SUP]32[/SUP]S/[SUP]34[/SUP]S) in cometary dust and gas and discuss briefly their implications. Special emphasis will be put on the determinations and progress performed in the field over the past years thanks to high resolution spectroscopy of cometary comae obtained with the ESO Very Large Telescope. Future perspectives from space missions and ground-based observations with new large and extremely large telescopes operating in the optical, infrared and submillimeter wavelengths will be presented. [less ▲]

Detailed reference viewed: 18 (6 ULg)
Full Text
Peer Reviewed
See detailThe CN isotopic ratios in comets
Manfroid, Jean ULg; Jehin, Emmanuel ULg; Hutsemekers, Damien ULg et al

in Astronomy and Astrophysics (2009), 503

Our aim is to determine the isotopic ratios [SUP]12[/SUP]C/[SUP]13[/SUP]C and [SUP]14[/SUP]N/[SUP]15[/SUP]N in a variety of comets and link these measurements to the formation and evolution of the solar ... [more ▼]

Our aim is to determine the isotopic ratios [SUP]12[/SUP]C/[SUP]13[/SUP]C and [SUP]14[/SUP]N/[SUP]15[/SUP]N in a variety of comets and link these measurements to the formation and evolution of the solar system. The [SUP]12[/SUP]C/[SUP]13[/SUP]C and [SUP]14[/SUP]N/[SUP]15[/SUP]N isotopic ratios are measured for the CN radical by means of high-resolution optical spectra of the R branch of the B-X (0, 0) violet band. 23 comets from different dynamical classes have been observed, sometimes at various heliocentric and nucleocentric distances, in order to estimate possible variations of the isotopic ratios in parent molecules. The [SUP]12[/SUP]C/[SUP]13[/SUP]C and [SUP]14[/SUP]N/[SUP]15[/SUP]N isotopic ratios in CN are remarkably constant (average values of, respectively, 91.0 ± 3.6 and 147.8 ± 5.7) within our measurement errors, for all comets whatever their origin or heliocentric distance. While the carbon isotopic ratio does agree with the terrestrial value (89), the nitrogen ratio is a factor of two lower than the terrestrial value (272), indicating a fractionation in the early solar system, or in the protosolar nebula, common to all the comets of our sample. This points towards a common origin of the comets independently of their birthplaces, and a relationship between HCN and CN. Appendices and Table [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programmes ID 268.C-5570, 270.C-5043, 073.C-0525, 274.C-5015 and 075.C-0355(A). [less ▲]

Detailed reference viewed: 22 (1 ULg)
Full Text
Peer Reviewed
See detailA Multi-Wavelength Simultaneous Study of the Composition of the Halley Family Comet 8P/Tuttle
Jehin, Emmanuel ULg; Bockelée-Morvan, Dominique; Dello Russo, N. et al

in Earth, Moon, and Planets (2009), 105

We report on simultaneous optical and infrared observations of the Halley Family comet 8P/Tuttle performed with the ESO Very Large Telescope. Such multi-wavelength and coordinated observations are a good ... [more ▼]

We report on simultaneous optical and infrared observations of the Halley Family comet 8P/Tuttle performed with the ESO Very Large Telescope. Such multi-wavelength and coordinated observations are a good example of what can be done to support space missions. From high resolution optical spectroscopy of the CN (0,0) 388 nm and NH[SUB]2[/SUB] (0,9,0) 610 nm bands using UVES at UT2 we determined [SUP]12[/SUP]C/[SUP]13[/SUP]C = 90 ± 10 and [SUP]14[/SUP]N/[SUP]15[/SUP]N = 150 ± 20 in CN and we derived a nuclear spin temperature of NH[SUB]3[/SUB] of 29 ± 1 K. These values are similar to those found in Oort-Cloud and Jupiter Family comets. From low resolution long slit spectroscopy with FORS1 at UT2 we determined the CN, C[SUB]3[/SUB] and C[SUB]2[/SUB] production rates and the parent and daughter scale lengths up to 5.2 10[SUP]5[/SUP] km tailward. From high resolution IR spectroscopy with CRIRES at UT1 we measured simultaneously the production rates and mixing ratios of H[SUB]2[/SUB]O, HCN, C[SUB]2[/SUB]H[SUB]2[/SUB], CH[SUB]4[/SUB], C[SUB]2[/SUB]H[SUB]6[/SUB], and CH[SUB]3[/SUB]OH. [less ▲]

Detailed reference viewed: 15 (2 ULg)
Full Text
Peer Reviewed
See detailThe 16OH/18OH and OD/OH isotope ratios in comet C/2002 T7 (LINEAR)
Hutsemekers, Damien ULg; Manfroid, Jean ULg; Jehin, Emmanuel ULg et al

in Astronomy and Astrophysics (2008), 490(Letters), 31-34

The [SUP]16[/SUP]OH/[SUP]18[/SUP]OH and OD/OH isotope ratios are measured in the Oort-Cloud comet C/2002 T7 (LINEAR) through ground-based observations of the OH A [SUP]2[/SUP]Σ[SUP]+[/SUP] - X [SUP]2 ... [more ▼]

The [SUP]16[/SUP]OH/[SUP]18[/SUP]OH and OD/OH isotope ratios are measured in the Oort-Cloud comet C/2002 T7 (LINEAR) through ground-based observations of the OH A [SUP]2[/SUP]Σ[SUP]+[/SUP] - X [SUP]2[/SUP]Π[SUB]i[/SUB] ultraviolet bands at 3063 à (0, 0) and 3121 à (1, 1) obtained with the Very Large Telescope (VLT) feeding the Ultraviolet-Visual Echelle Spectrograph (UVES). From the [SUP]16[/SUP]OH/[SUP]18[/SUP]OH ratio, we find [SUP]16[/SUP]O/[SUP]18[/SUP]O = 425 ± 55, equal within the uncertainties to the terrestrial value and to the ratio measured in other comets, although marginally smaller. We also estimate OD/OH from which we derive D/H = 2.5 ± 0.7à 10[SUP]-4[/SUP] in water. This value is compatible with the water D/H ratios evaluated in other comets and is marginally higher than the terrestrial value. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Programme 073.C-0525). [less ▲]

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailIsotopic abundance in the CN coma of comets: Ten years of measurements
Schulz, R.; Jehin, Emmanuel ULg; Manfroid, Jean ULg et al

in Planetary and Space Science (2008), 56

Over the past 10 years the isotopic ratios of carbon ([SUP]12[/SUP]C/[SUP]13[/SUP]C) and nitrogen ([SUP]14[/SUP]N/[SUP]15[/SUP]N) have been determined for a dozen comets, bright enough to allow obtaining ... [more ▼]

Over the past 10 years the isotopic ratios of carbon ([SUP]12[/SUP]C/[SUP]13[/SUP]C) and nitrogen ([SUP]14[/SUP]N/[SUP]15[/SUP]N) have been determined for a dozen comets, bright enough to allow obtaining the required measurements from the ground. The ratios were derived from high-resolution spectra of the CN coma measured in the B[SUP]2[/SUP]â [SUP]+[/SUP]â X[SUP]2[/SUP]â [SUP]+[/SUP] (0, 0) emission band around 387 nm. The observed comets belong to different dynamical classes, including dynamically new as well as long- and short-period comets from the Halley- and Jupiter-family. In some cases the comets could be observed at various heliocentric distances. All values determined for the carbon and nitrogen isotopic ratios were consistent within the error margin irrespective of the type of comet or the heliocentric distance at which it was observed. Our investigations resulted in average ratios of [SUP]12[/SUP]C/[SUP]13[/SUP]C=91±21 and nitrogen [SUP]14[/SUP]N/[SUP]15[/SUP]N=141±29. Whilst the value for the carbon isotopic ratio is in good agreement with the solar and terrestrial value of 89, the nitrogen isotopic ratio is very different from the telluric value of 272. [less ▲]

Detailed reference viewed: 27 (2 ULg)
Full Text
See detailHigh-dispersion Spectroscopic Observations Of 8P/Tuttle With VLT/CRIRES
Kobayashi, Hitomi; Bockelee-Morvan, D.; Dello Russo, N. et al

in Bulletin of the American Astronomical Society (2008, September 01), 40

We present near-infrared observations of organic molecules in comet 8P/Tuttle. Comet 8P/Tuttle is a Halley-type comet and its last perihelion was in early January 2008. Our observations were carried out ... [more ▼]

We present near-infrared observations of organic molecules in comet 8P/Tuttle. Comet 8P/Tuttle is a Halley-type comet and its last perihelion was in early January 2008. Our observations were carried out on January 28 and February 4 using CRIRES (CRyogenic high-resolution InfraRed Echelle Spectrograph) at the Very Large Telescope (VLT). We used a 0.2" slit which provided a spectral resolving power of 80,000. We detected H[SUB]2[/SUB]O, OH, HCN, C[SUB]2[/SUB]H[SUB]2[/SUB] on Jan 28, and H[SUB]2[/SUB]O, OH, CH[SUB]4[/SUB], C[SUB]2[/SUB]H[SUB]6[/SUB], and CH[SUB]3[/SUB]OH on Feb 4. We find that 8P/Tuttle is depleted in HCN, C[SUB]2[/SUB]H[SUB]2[/SUB] and C[SUB]2[/SUB]H[SUB]6[/SUB] relative to H[SUB]2[/SUB]O compared with most other Oort cloud comets studied to date. Perhaps these depletions suggest that 8P/Tuttle formed in a different region from most Oort cloud comets, but it is also possible that the depletions are caused by repeated passages through the inner solar system. [less ▲]

Detailed reference viewed: 61 (6 ULg)
Full Text
Peer Reviewed
See detailLarge Excess of Heavy Nitrogen in Both Hydrogen Cyanide and Cyanogen from Comet 17P/Holmes
Bockelée-Morvan, D.; Biver, N.; Jehin, Emmanuel ULg et al

in Astrophysical Journal (2008), 679(Letters), 49-52

From millimeter and optical observations of the Jupiter-family comet 17P/Holmes performed soon after its huge outburst of 2007 October 24, we derive [SUP]14[/SUP]N/[SUP]15[/SUP]N = 139 +/- 26 in HCN and ... [more ▼]

From millimeter and optical observations of the Jupiter-family comet 17P/Holmes performed soon after its huge outburst of 2007 October 24, we derive [SUP]14[/SUP]N/[SUP]15[/SUP]N = 139 +/- 26 in HCN and [SUP]14[/SUP]N/[SUP]15[/SUP]N = 165 +/- 40 in CN, establishing that HCN has the same nonterrestrial isotopic composition as CN. The same conclusion is obtained for the long-period comet C/1995 O1 (Hale-Bopp) after a reanalysis of previously published measurements. These results are compatible with HCN being the prime parent of CN in cometary atmospheres. The [SUP]15[/SUP]N excess relative to the Earth's atmospheric value indicates that N-bearing volatiles in the solar nebula underwent important N isotopic fractionation at some stage of solar system formation. HCN molecules never isotopically equilibrated with the main nitrogen reservoir in the solar nebula before being incorporated in Oort Cloud and Kuiper Belt comets. The [SUP]12[/SUP]C/[SUP]13[/SUP]C ratios in HCN and CN are measured to be consistent with the terrestrial value. [less ▲]

Detailed reference viewed: 43 (5 ULg)
Full Text
See detailNitrogen Isotope Ratios in Comets. ESO Astrophysics Symposia
Cochran, Anita L; Jehin, Emmanuel ULg; Manfroid, Jean ULg et al

in Precision Spectroscopy in Astrophysics (2008)

Not Available

Detailed reference viewed: 11 (0 ULg)
Full Text
See detailOptical Spectroscopy of the B and C Fragments of Comet 73P/Schwassmann-Wachmann 3 at the ESO VLT
Jehin, Emmanuel ULg; Manfroid, Jean ULg; Kawakita, H. et al

in LPI contribution 1405 (2008)

Not Available

Detailed reference viewed: 15 (3 ULg)
Full Text
See detailA Multi-Wavelength Simultaneous Study of the Composition of the Halley-Family Comet 8P/Tuttle at the VLT
Bockelée-Morvan, Dominique; Dello Russo, N.; Jehin, Emmanuel ULg et al

in LPI contribution 1405 (2008)

Not Available

Detailed reference viewed: 19 (3 ULg)
Full Text
See detailCarbon and Nitrogen Isotopic Ratios in Comets
Jehin, Emmanuel ULg; Manfroid, Jean ULg; Hutsemekers, Damien ULg et al

in LPI contribution 1405 (2008)

Not Available

Detailed reference viewed: 38 (3 ULg)
Full Text
Peer Reviewed
See detailThe impact and rotational light curves of Comet 9P/Tempel 1
Manfroid, Jean ULg; Hutsemekers, Damien ULg; Jehin, Emmanuel ULg et al

in Icarus: International Journal of Solar System Studies (2007), 187

UVES and HIRES high-resolution spectra of Comet 9P/Tempel 1 are used to investigate the impact and rotational light curves of various species with a view toward building a simple model of the distribution ... [more ▼]

UVES and HIRES high-resolution spectra of Comet 9P/Tempel 1 are used to investigate the impact and rotational light curves of various species with a view toward building a simple model of the distribution and activity of the sources. The emission by OH, NH, CN, C[SUB]3[/SUB], CH, C[SUB]2[/SUB], NH[SUB]2[/SUB], and OI, are analyzed, as well as the light scattered by the dust. It is found that a simple model reproduces fairly well the impact light curves of all species combining the production of the observed molecules and the expansion of the material throughout the slit. The impact light curves are consistent with velocities of 400 600 m/s. Their modeling requires a three-step dissociation sequence ``Grand-Parent --> Parent --> Daughter'' to produce the observed molecules. The rotational light curve for each species is explained in terms of a single model with three sources. The dust component can however not easily be explained that way. [less ▲]

Detailed reference viewed: 9 (2 ULg)
Full Text
Peer Reviewed
See detailThe impact and rotational light curves of Comet 9P/Tempel 1
Manfroid, Jean ULg; Hutsemekers, Damien ULg; Jehin, Emmanuel ULg et al

in Icarus: International Journal of Solar System Studies (2007), 191

UVES and HIRES high-resolution spectra of Comet 9P/Tempel 1 are used to investigate the impact and rotational light curves of various species with a view toward building a simple model of the distribution ... [more ▼]

UVES and HIRES high-resolution spectra of Comet 9P/Tempel 1 are used to investigate the impact and rotational light curves of various species with a view toward building a simple model of the distribution and activity of the sources. The emission by OH, NH, CN, C[SUB]3[/SUB], CH, C[SUB]2[/SUB], NH[SUB]2[/SUB], and OI, are analyzed, as well as the light scattered by the dust. It is found that a simple model reproduces fairly well the impact light curves of all species combining the production of the observed molecules and the expansion of the material throughout the slit. The impact light curves are consistent with velocities of 400 600 m/s. Their modeling requires a three-step dissociation sequence ``Grand-Parent --> Parent --> Daughter'' to produce the observed molecules. The rotational light curve for each species is explained in terms of a single model with three sources. The dust component can however not easily be explained that way. [less ▲]

Detailed reference viewed: 9 (3 ULg)
Full Text
Peer Reviewed
See detailDeep Impact: High-Resolution Optical Spectroscopy with the ESO VLT and the Keck I Telescope
Jehin, Emmanuel ULg; Manfroid, Jean ULg; Hutsemekers, Damien ULg et al

in Astrophysical Journal (2006), 641(Letters), 145-148

We report on observations of comet 9P/Tempel 1 carried out before, during, and after the NASA Deep Impact event (UT July 4), with the optical spectrometers UVES and HIRES mounted on the telescopes Kueyen ... [more ▼]

We report on observations of comet 9P/Tempel 1 carried out before, during, and after the NASA Deep Impact event (UT July 4), with the optical spectrometers UVES and HIRES mounted on the telescopes Kueyen of the ESO VLT (Chile) and Keck I on Mauna Kea (Hawaii), respectively. A total observing time of about 60 hr, distributed over 15 nights around the impact date, allowed us (1) to find a periodic variation of 1.709 +/- 0.009 days in the CN and NH flux, explained by the presence of two major active regions; (2) to derive a lifetime >~5 × 10[SUP]4[/SUP] s (at 1.5 AU) for the parent of the CN radical from a simple modeling of the CN light curve after the impact; (3) to follow the gas and dust spatial profiles' evolution during the 4 hr following the impact and derive the projected velocities (400 and 150 m s[SUP]-1[/SUP], respectively); and (4) to show that the material released by the impact has the same carbon and nitrogen isotopic composition as the surface material ([SUP]12[/SUP]C/[SUP] 13[/SUP]C = 95 +/- 15 and [SUP]14[/SUP]N/[SUP]15[/SUP]N = 145 +/- 20). [less ▲]

Detailed reference viewed: 19 (5 ULg)