References of "Andrianne, Thomas"
     in
Bookmark and Share    
Full Text
See detailSimulations, Normes, Soufflerie en ingénierie du vent : Quel outil pour quelle application ?
Frère, Ariane; Andrianne, Thomas ULg; Parmentier, Benoit

Conference given outside the academic context (2013)

Cette présentation a pour objectif de présenter les 3 moyens principaux de mener une étude technique dans le domaine de l'ingénierie du vent : simulation numérique, essais en soufflerie et normes. Les ... [more ▼]

Cette présentation a pour objectif de présenter les 3 moyens principaux de mener une étude technique dans le domaine de l'ingénierie du vent : simulation numérique, essais en soufflerie et normes. Les avantages et inconvénients, ainsi que la complémentarité des 3 approches sont présentés et discutés. [less ▲]

Detailed reference viewed: 30 (10 ULg)
Full Text
Peer Reviewed
See detailExperimental and numerical investigations of the torsional flutter oscillations of a 4:1 rectangular cylinder
Andrianne, Thomas ULg; Dimitriadis, Grigorios ULg

in Journal of Fluids & Structures (2013), 41

The torsional flutter oscillations of a 4:1 rectangular cylinder around its pitching axis are investigated through wind tunnel experiments and numerical simulations. The rectangle’s responses to different ... [more ▼]

The torsional flutter oscillations of a 4:1 rectangular cylinder around its pitching axis are investigated through wind tunnel experiments and numerical simulations. The rectangle’s responses to different initial conditions and turbulence excitations at various wind tunnel airspeeds are recorded. Timeresolved Particle Image Velocimetry measurements are taken at two different airspeeds, when the rectangle undergoes Limit Cycle Oscillations. Aeroelastic simulations are carried out using the Discrete Vortex Method and the resulting responses are compared to the experimental measurements. The Common-base Proper Orthogonal Decomposition method is used to analyse and compare the measured and simulated unsteady flow fields around the rectangle. A discussion of the participation of each mode in the different states of the flow-field is presented, at two different amplitudes of oscillation. The Motion Induced Vortex (MIV) is identified as the fundamental cause of the torsional flutter phenomenon and its role over a complete cycle is studied. MIV-induced oscillations can be started either by a suitable initial disturbance or by a second, nearly linear self-excited instability that causes negative aerodynamic damping. The combination of these two instabilities results in a complete description of the torsional flutter of the rectangle. [less ▲]

Detailed reference viewed: 62 (24 ULg)
Full Text
See detailTorsional flutter of bluff bodies
Terrapon, Vincent ULg; Guissart, Amandine ULg; Andrianne, Thomas ULg et al

Scientific conference (2013, July 15)

Detailed reference viewed: 27 (13 ULg)
Full Text
See detailUsing Proper Orthogonal Decomposition and Dynamic Mode Decomposition Methods for Comparing CFD Results Experimental Measurements
Guissart, Amandine ULg; Andrianne, Thomas ULg; Dimitriadis, Grigorios ULg et al

in Proceedings of the 16th International Forum on Aeroelasticity and Structural Dynamics, IFASD 2013 (2013, June 26)

A method for the quantitative comparison of numerical and/or experimental data of unsteady aerodynamics around static and oscillating bodies is introduced. It is based on Proper Orthogonal Decomposition ... [more ▼]

A method for the quantitative comparison of numerical and/or experimental data of unsteady aerodynamics around static and oscillating bodies is introduced. It is based on Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) to extract the dominant structures of the unsteady flow. The proposed method is applied to spatio-temporal data for the flow around a 4:1 rectangular cylinder. Exper- imental data are obtained from wind tunnel testing and two dimensional Time-resolved Particle Image Velocimetry (Tr-PIV) measurements, while unsteady Reynolds Averaged Navier-Stokes (uRANS) are used to compute numerical results. It is demonstrated that the two approaches are complementary and represent a powerful tool that enables the analysis and the quantitative comparison of the main spatial (POD) and temporal (DMD) characteristics of unsteady aerodynamic data. [less ▲]

Detailed reference viewed: 74 (24 ULg)
Full Text
Peer Reviewed
See detailIntegrating Experimental and Computational Fluid Dynamics approaches using Proper Orthogonal Decomposition Techniques
Andrianne, Thomas ULg; Yasue, Kanako; Guissart, Amandine ULg et al

in Progress in Aerospace Sciences (2013)

The concept of Proper Orthogonal Decomposition (POD) is used to integrate Experimental Fluid Dynamics (EFD) and Computational Fluid Dynamics (CFD) approaches. The key idea is to take advantage of the ... [more ▼]

The concept of Proper Orthogonal Decomposition (POD) is used to integrate Experimental Fluid Dynamics (EFD) and Computational Fluid Dynamics (CFD) approaches. The key idea is to take advantage of the optimality of the POD technique and its capability to extract the most energetic patterns of complex aerodynamic flow fields. First, the concept of Modal Assurance Criterion (MAC) is used to obtain a simple quantitative criterion to compare EFD measurements to CFD results. The comparison is based on the POD modes, extracted from each set of data. The analysis of the energy content of the modes allows to draw important conclusions about the role of the latter. The method is applied in the study of the flow field around a rectangular cylinder, which is either static or oscillating in a low-speed flow field. The second EFD/CFD integration technique deals with the reconstruction of a flow field from measured data, making use of CFD simulation results. The POD modes are first extracted from several CFD data sets, using a snapshot POD approach. Then the entire flow field of measured data can be reconstructed using a gappy POD method. The technique is applied to the transonic flow around a civil aircraft type wind tunnel model. The EFD measurements consist in pressure coefficient data from pressure ports or pressure-sensitive paint. It is shown that the complete flow field can be reconstructed from the pressure data with satisfactory accuracy and at relatively low computational cost. The work demonstrates the potential of the POD technique to integrate EFD and CFD data, leading to a combined, validated and complete analysis of the flow under consideration. [less ▲]

Detailed reference viewed: 127 (23 ULg)
Full Text
See detailUsing Proper Orthogonal Decomposition Methods for Comparing CFD Results to Experimental Measurements
Andrianne, Thomas ULg; Guissart, Amandine ULg; Terrapon, Vincent ULg et al

Scientific conference (2012, December 07)

This work presents a method for quantitative comparison of numerical results to experimental measurements. It is based on the concept of Proper Orthogonal Decomposition. This technique is selected in ... [more ▼]

This work presents a method for quantitative comparison of numerical results to experimental measurements. It is based on the concept of Proper Orthogonal Decomposition. This technique is selected in order to compare the unsteady aerodynamic flows around static and oscillating bodies obtained from wind tunnel testing and numerical simulations. Two dimensional Time-resolved Particle Image Velocimetry measurements are carried out on the upper surface a 4:1 rectangular cylinder. Simulations are performed using unsteady Reynolds-Averaged Navier-Stokes and an unsteady Discrete Vortex Method. It is demonstrated that the proposed technique is a good preliminary step for comparing the main characteristics of unsteady aerodynamic data. [less ▲]

Detailed reference viewed: 49 (21 ULg)
Full Text
See detailUsing Proper Orthogonal Decomposition Methods for Comparing CFD Results to Experimental Measurements
Andrianne, Thomas ULg; Guissart, Amandine ULg; Terrapon, Vincent ULg et al

in Proceedings of the 5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 2012) (2012, October 03)

This work presents a method for quantitative comparison of numerical results to experimental measurements. It is based on the concept of Proper Orthogonal Decomposition. This technique is selected in ... [more ▼]

This work presents a method for quantitative comparison of numerical results to experimental measurements. It is based on the concept of Proper Orthogonal Decomposition. This technique is selected in order to compare the unsteady aerodynamic flows around static and oscillating bodies obtained from wind tunnel testing and numerical simulations. Two dimensional Time-resolved Particle Image Velocimetry measurements are carried out on the upper surface a 4:1 rectangular cylinder. Simulations are performed using unsteady Reynolds-Averaged Navier-Stokes and an unsteady Discrete Vortex Method. It is demonstrated that the proposed technique is a good preliminary step for comparing the main characteristics of unsteady aerodynamic data. [less ▲]

Detailed reference viewed: 162 (38 ULg)
Full Text
See detailDamping identification of linear dynamic systems using Common-base Proper Orthogonal Decomposition
Andrianne, Thomas ULg; Dimitriadis, Grigorios ULg

in Proceedings of ISMA2012 (2012, September 19)

This paper presents a novel identification technique of the modal damping of linear systems. It is based on the Proper Orthogonal Decomposition (POD) of the free response of the system and extended to the ... [more ▼]

This paper presents a novel identification technique of the modal damping of linear systems. It is based on the Proper Orthogonal Decomposition (POD) of the free response of the system and extended to the Common-base POD (CPOD) approach. Different initial conditions are applied to the system and the corresponding free responses are considered simultaneously. The CPOD technique leads to a unique vector basis which is likely to contain more information about the dynamics of the system than a vector basis obtained by the classic POD technique, based on one set of initial conditions only. The ability of the technique to estimate the modal damping is demonstrated on a simulated mass-spring-damper system and an experimental system. Good agreement is shown between the damping estimates of the CPOD technique and the ones of the LSCF technique. The advantage and limitations of the present technique are discussed. [less ▲]

Detailed reference viewed: 40 (2 ULg)
Full Text
See detailNumerical simulations of torsional flutter oscillations of a bluff body: Energy issues, GraSMech poster session
Andrianne, Thomas ULg; Dimitriadis, Grigorios ULg

Poster (2012, May)

The possibility of harvesting energy from aeroelastic phenomena is assessed through numerical simulations. The unsteady aerodynamics around an aeroelastic structure are modeled using the Discrete Vortex ... [more ▼]

The possibility of harvesting energy from aeroelastic phenomena is assessed through numerical simulations. The unsteady aerodynamics around an aeroelastic structure are modeled using the Discrete Vortex Method (DVM). The Torsional Flutter oscillations of a rectangular cylinder are studied in this work. The phenomenon is characterized by Limit Cycle Oscillations (LCOs) around the pitch axis of the rectangle. The complete bifurcation behaviour is investigated numerically and compared to wind tunnel measurements for validation. The energy issues are investigated in terms of the sensibility of the energy output to variations in the structural damping. [less ▲]

Detailed reference viewed: 49 (12 ULg)
Full Text
See detailA Cross-Validation Approach to Approximate Basis Function Selection of the Stall Flutter Response of a Rectangular Wing in a Wind Tunnel
Kukreja, Sunil L.; Vio, Gareth A.; Andrianne, Thomas ULg et al

in Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2012, April 25)

The stall flutter response of a rectangular wing in a low speed wind tunnel is modelled using a nonlinear difference equation description. Static and dynamic tests are used to select a suitable model ... [more ▼]

The stall flutter response of a rectangular wing in a low speed wind tunnel is modelled using a nonlinear difference equation description. Static and dynamic tests are used to select a suitable model structure and basis function. Bifurcation criteria such as the Hopf condition and vibration amplitude variation with airspeed were used to ensure the model was representative of experimentally measured stall flutter phenomena. Dynamic test data were used to estimate model parameters and estimate an approximate basis function. [less ▲]

Detailed reference viewed: 37 (10 ULg)
Full Text
See detailDiscrete Vortex Simulations of the torsional flutter oscillations of a 4:1 rectangular cylinder
Andrianne, Thomas ULg; Dimitriadis, Grigorios ULg

in Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2012, April 24)

This work presents aeroelastic simulations of a 2D bluff-body around its pitching degree of freedom. The numerical tool consists in an aerodynamic solver based on the Discrete Vortex Method (DVM), coupled ... [more ▼]

This work presents aeroelastic simulations of a 2D bluff-body around its pitching degree of freedom. The numerical tool consists in an aerodynamic solver based on the Discrete Vortex Method (DVM), coupled with a linear structural model. The shape of the bluff-body is a sharp edged rectangular cylinder with a side ratio equal to 4. The numerical results are compared to the experimental measurements recently obtained by the authors.8 The validation is carried out in three steps: first the frequency content of the flow-field in the wake of the static body is investigated. Then the simulated unsteady flow-field around the imposed pitching motion of the body is compared to experimental flow visualizations. This comparison is performed using Proper Orthogonal Decomposition (POD). Finally, the simulation of the global aeroelastic behaviour, based on the coupling of the DVM code to the structural model of the pitching degree of freedom is carried out and the results are compared to measured aeroelastic responses.. Very good agreements are found between numerical and experimental results, demonstrating the capabilities of the numerical tool to simulate complex unsteady aerodynamics around an oscillating bluff-body. [less ▲]

Detailed reference viewed: 26 (10 ULg)
Full Text
Peer Reviewed
See detailDamping identification of lightly damped linear dynamic systems using Common-base Proper Orthogonal Decomposition
Andrianne, Thomas ULg; Dimitriadis, Grigorios ULg

in Mechanical Systems & Signal Processing (2012), 28

This paper presents a new technique to identify the damping of linear systems. It is developed from the Proper Orthogonal Decomposition (POD) of the free response of the system and extended to the ... [more ▼]

This paper presents a new technique to identify the damping of linear systems. It is developed from the Proper Orthogonal Decomposition (POD) of the free response of the system and extended to the recently proposed Common-base POD (CPOD). The present application of CPOD considers simultaneously several free responses of the system to different initial conditions. The eigen-decomposition of the co-variance matrix leads to a unique vector basis which is likely to contain more information about the dynamics of the system than a vector basis obtained by the classic POD technique. The ability of the technique to estimate the mode shapes and the modal damping is demonstrated on a simulated mass-spring-damper system. Two different distributions of masses are considered in order to confront the CPOD analysis to the intrinsic limitation of POD, i.e. that the mode shapes are identified exactly only if the mass matrix is proportional to the identity matrix. It is shown that the identification of the damping is still possible when the modes are not orthonormal. The robustness of the technique is demonstrated in the presence of noise in the responses of the system and through an experimental application with comparison with other identifications techniques. [less ▲]

Detailed reference viewed: 73 (12 ULg)
Full Text
See detailExperimental and Numerical Investigations of the Aeroelastic Stability of Bluff Structures
Andrianne, Thomas ULg

Doctoral thesis (2012)

The study of the dynamic interactions between the wind and civil engineering structures has become increasingly important over the last few decades. Most of these structures are aerodynamically "bluff ... [more ▼]

The study of the dynamic interactions between the wind and civil engineering structures has become increasingly important over the last few decades. Most of these structures are aerodynamically "bluff" and are becoming more flexible. Bluff-body aeroelasticity is a very challenging research area due to the unsteadiness and nonlinearity of the aerodynamic loading. This thesis presents the investigation of three aeroelastic phenomena affecting bluff-bodies: Vortex Induced Vibration (VIV), Galloping and Torsional Flutter. For each instability, extensive experimental studies are carried out in the wind tunnel. Innovative analysis, based on the Common-base Proper Orthogonal Decomposition (CPOD) method is used to study the flow visualization data. The VIV phenomenon is studied on a flexible tube with a circular cross-section, supported from its midpoint. A CPOD-based input-output model is developed to describe the system. The galloping instability is studied on a generic bridge section. A complete analysis of the aeroelastic behaviour of the structure is presented and a new polynomial empirical model is developed, which reflects accurately the nonlinear nature of the system. The torsional flutter phenomenon is extensively studied for two different structures: a generic bridge deck and a rectangular cylinder. The Motion Induced Vortex is identified as the fundamental cause of this aeroelastic phenomenon, on the basis of the analysis of the flow around the oscillating rectangle. In addition, it is demonstrated that the quasi-steady theory is not adapted to estimate the onset velocity of torsional flutter. Finally, a 2D aeroelastic simulation code, based on the Discrete Vortex Method (DVM) is developed. The non-linear aerodynamics around the body are well reproduced, allowing the simulation of all the aeroelastic instabilities investigated experimentally. [less ▲]

Detailed reference viewed: 201 (62 ULg)
Full Text
Peer Reviewed
See detailExperimental Analysis of the Bifurcation Behaviour of a Bridge Deck Undergoing Across-Wind Galloping
Andrianne, Thomas ULg; Dimitriadis, Grigorios ULg

in De Roeck, G.; Degrande, G.; Lombaert, G. (Eds.) et al Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011 (2011, July 05)

The phenomenon of aeroelastic galloping is a very important design consideration for bridges and other slender structures. It has been investigated by a number of researchers but, most frequently, the ... [more ▼]

The phenomenon of aeroelastic galloping is a very important design consideration for bridges and other slender structures. It has been investigated by a number of researchers but, most frequently, the analysis is limited to quasi-steady aerodynamic and linearized aeroelastic considerations. Such treatment has been shown to be effective for simple cross-sectional shapes, such as rectangles. In this work, an aeroelastic model of a realistic bridge deck cross-section is tested in a low speed wind tunnel. Both static and dynamic tests are carried out and the resulting force and vibration measurements are presented. The static force results are used to set up a quasi-steady mathematical model. The dynamic responses are used to draw a complete bifurcation diagram within a chosen airspeed range and to discuss the stability of the system. It is shown that the experimental system undergoes a subcritical Hopf bifurcation, its phase space including both a stable and an unstable limit cycle. As consequence, throughout the chosen airspeed, the system can either remain stable or undergo limit cycle oscillations. The quasi-steady analysis fails completely in capturing this type of behaviour. The predicted galloping onset speed is too conservative and the predicted oscillation amplitudes too high. The reason for this failure is the fact that the quasi-steady mathematical model is incapable of modelling subcritical Hopf bifurcations. [less ▲]

Detailed reference viewed: 60 (20 ULg)
Full Text
See detailWind tunnel analysis of separated aerodynamics leading to different types of torsional flutter in bluff-bodies.
Andrianne, Thomas ULg; Korbahti, Banu; Dimitriadis, Grigorios ULg

in Proceedings of the 15th International Forum on Aeroelasticity and Structural Dynamics, IFASD 2011 (2011, June 29)

A new experimental apparatus has been developed at the wind tunnel laboratory of University of Liège with the objective to study the torsional flutter instability of a rectangular cylinder. Different ... [more ▼]

A new experimental apparatus has been developed at the wind tunnel laboratory of University of Liège with the objective to study the torsional flutter instability of a rectangular cylinder. Different configurations, based on the position of the pitching axis, the stiffness of the restoring springs and the static equilibrium angle of the model have been tested and analysed. Sub- and supercritical bifurcations behaviour has been identified. The dynamics of the system, as well as the aerodynamic phenomena taking place around the model have been measured. The frequency content of the pitching displacement and the longitudinal component of the velocity in the wake showed the occurrence of two types of aerodynamic instability: large separation from the leading edge and vortex shedding in the Strouhal sense. Furthermore, preliminary Particle Image Velocimetry visualisation confirmed the presence of complex aerodynamic phenomena over the upper surface and in the wake of the model. These measurements allow a better understanding of the sources of aerodynamic excitation leading to torsional flutter. [less ▲]

Detailed reference viewed: 61 (13 ULg)
Full Text
See detailFlow Visualization and Proper Orthogonal Decomposition of Aeroelastic Phenomena
Andrianne, Thomas ULg; Norizham, Abdul Razak ULg; Dimitriadis, Grigorios ULg

in Okamoto, Satoru (Ed.) Wind Tunnels (2011)

The modal decomposition of unsteady flowfields was proposed in the 1990s by several authors. Proper Orthogonal Decomposition (POD) is one method that can be used in order to perform this modal ... [more ▼]

The modal decomposition of unsteady flowfields was proposed in the 1990s by several authors. Proper Orthogonal Decomposition (POD) is one method that can be used in order to perform this modal decomposition; it became popular for aerodynamics research in the 2000s, although it was first proposed for use in fluid dynamics in the 1960s. The objective of the present work is to expand the methodology of the application of POD to experimental flowfields. There are two aspects to this expansion: 1. Allow the models to oscillate. The source of the unsteadiness will then be the movement of the model, as well as any unsteadiness due to flow separation. 2. Study the interaction between the different sources of unsteadiness. In particular observe how the modes generated by one source of unsteadiness interact with the modes generated by the other. Determine if it is possible to separate the structural from the aerodynamic sources of unsteadiness. [less ▲]

Detailed reference viewed: 67 (25 ULg)
Full Text
Peer Reviewed
See detailSubcritical, nontypical and period doubling bifurcations of a Delta Wing in a low speed wind tunnel
Korbahti, Banu; Kagambage, Emile ULg; Andrianne, Thomas ULg et al

in Journal of Fluids & Structures (2011), 27(3), 408-426

Limit Cycle Oscillations (LCOs) involving Delta wings are an important area of research in modern aeroelasticity. Such phenomena can be the result of geometric or aerodynamic nonlinearity. In this paper ... [more ▼]

Limit Cycle Oscillations (LCOs) involving Delta wings are an important area of research in modern aeroelasticity. Such phenomena can be the result of geometric or aerodynamic nonlinearity. In this paper, a flexible half-span Delta wing is tested in a low speed wind tunnel in order to investigate its dynamic response. The wing is designed to be more flexible than the models used in previous research on the subject in order to expand the airspeed range in which LCOs occur. The experiments reveal that this wing features a very rich bifurcation behavior. Three types of bifurcation are observed for the first time for such an aeroelastic system: subcritical bifurcations, period doubling/period halving and nontypical bifurcations. They give rise to a great variety of LCOs, even at very low angles of attack.The LCOs resulting from the nontypical bifurcation display Hopf-type behavior, i.e. have fundamental frequencies equal to one of the linear modal frequencies. All of the other LCOs have fundamental frequencies that are unrelated to the underlying linear system modes. [less ▲]

Detailed reference viewed: 50 (19 ULg)
Full Text
Peer Reviewed
See detailFlutter and stall flutter of a rectangular wing in a wind tunnel
Norizham, Abdul Razak ULg; Andrianne, Thomas ULg; Dimitriadis, Grigorios ULg

in AIAA Journal (2011), 49(10), 2258-2271

The aeroelastic behavior of a rectangular wing with pitch and plunge degrees of freedom was observed experimentally using pressure, acceleration and PIV measurements. The wing was set at different static ... [more ▼]

The aeroelastic behavior of a rectangular wing with pitch and plunge degrees of freedom was observed experimentally using pressure, acceleration and PIV measurements. The wing was set at different static angles of attack and wind tunnel airspeeds. The wing's dynamic behavior was governed by a two-parameter bifurcation from steady to Limit Cycle Oscillations (LCO), the two parameters being the airspeed and the static angle of attack. At the lowest static angle, the wing underwent a classical flutter phenomenon that was transformed into a supercritical Hopf bifurcation at higher angles. The latter was combined with a fold bifurcation at intermediate angles of attack. All LCOs observed were either low amplitude oscillations with time-varying amplitude or high amplitude oscillations with nearly steady amplitude. They were caused by two different types of dynamic stall phenomena. During low amplitude LCOs the periodically stalled flow covered only the rear part of the wing. During high amplitude LCOs, trailing edge and leading edge separation occured. Trailing edge separation was characterized by a significant amount of unsteadiness, varying visibly from cycle to cycle. The occurrence of leading edge separation was much more regular and had the tendency to stabilize the amplitude of the LCO motion. [less ▲]

Detailed reference viewed: 163 (32 ULg)
Full Text
See detailLimit Cycle Oscillations of a Delta Wing in a Low Speed Wind Tunnel
Korbahti, Banu; Kagambage, Emile ULg; Andrianne, Thomas ULg et al

in Proceedings of ISMA2010 (2010, September 22)

Limit cycle oscillations involving Delta wings are an important area of research in modern aeroelasticity. Such phenomena can be the result of structural or aerodynamic nonlinearity. In this paper, a ... [more ▼]

Limit cycle oscillations involving Delta wings are an important area of research in modern aeroelasticity. Such phenomena can be the result of structural or aerodynamic nonlinearity. In this paper, a flexible half-Delta wing is tested in a low speed wind tunnel in order to investigate its dynamic response. Specifically, an investigation to determine the effects of a steady angle of attack on nonlinear Limit Cycle Oscillations (LCO) of a delta wing-plate model in low subsonic flow has been undertaken. It was found that, at several combinations of airspeed and angle of attack, the wing undergoes limit cycle oscillations. Two types of such oscillations are observed. One of them is low amplitude, low complexity limit cycle oscillations that occur at lower airspeeds; the other is high amplitude, high complexity limit cycle oscillations that occur a higher airspeeds and can appear abruptly. Some of the LCOs are the result of a subcritical Hopf bifurcation occurring at low steady angles of attack. At higher angles, a nontypical bifurcation was observed, whereby LCOs appear, grow with airspeed but then diminish and finally disappear as the airspeed is increased further. [less ▲]

Detailed reference viewed: 78 (27 ULg)