References of "Amisi, Safari"
     in
Bookmark and Share    
Full Text
See detailEtude ab-initio d’oxydes antiferroélectriques de structure pérovskite
Amisi, Safari ULg

Doctoral thesis (2013)

In this thesis we present an original ab-initio study of the evolution of antiferrodistortive (AFD), anti-polar electric (APE), and ferroelectric (FE) instabilities in various ABO3 oxides of perovskite ... [more ▼]

In this thesis we present an original ab-initio study of the evolution of antiferrodistortive (AFD), anti-polar electric (APE), and ferroelectric (FE) instabilities in various ABO3 oxides of perovskite structure, as well as their structural and dynamic properties. The main goal is to understand better the microscopic origin of the antiferroelectricity exhibited in these compounds. Three prototypical compounds are studied in detail : PbZrO3 , NaNbO3 , and SrZrO3. After a general introduction on ABO3 compounds, and the ab-initio techniques, we review the concept of antiferroelectricity in perovskites, highlighting some ambiguities in the usual definition and the necessity of turning to what we call a modern definition of antiferroelectricity. First, we highlight that it is the rigidity of the oxygen cage that tends to favor the FE distortion compared to the APE instability. Although illustrated on BaTiO3 , this argument is general, and confirmed by the inspection of the phonons dispersion curves of the ABO3 compounds in whom the strongest instability of the FE/APE branch is systematically at Γ. We show that the emergence of a stable or meta-stable APE distortion appear naturally through a coupling with other instabilities. The presence of AFD modes turns out to be a concrete way to create mixed FE/AFD and APE/AFD phases, crucial for the emergence of antiferroelectricity (AFE). This clarifies why the known AFE compounds systematically include AFD distortions. In this context, since the FE, APE and AFD instabilities are usually in competition, the coexistence of FE, APE and AFD instabilities of strong amplitudes seems required to create mixed phases combining them. This establishes the context convenient to the development of FE and AFE metastable phases close in energy. Another important element concerns the need of a first order AFE-FE transition under electric field producing a double hysteresis loop, typical of AFE compounds. Here also the AFD modes could play a key-role by allowing the emergence of FE/AFD and APE/AFD phases close in energy and developing distinct tilt patterns. These various elements give a new perspective on AFE and allow us to have a more precise idea of the origin of the AFE behavior in perovskites. We identify some key intrinsic characteristics allowing the prediction of materials with the propensity of developing an AFE behavior. [less ▲]

Detailed reference viewed: 91 (12 ULg)
Full Text
Peer Reviewed
See detailFirst-principles study of structural and vibrational properties of SrZrO3
Amisi, Safari ULg; Bousquet, Eric ULg; Katcho, Karume et al

in Physical Review. B, Condensed Matter and Materials Physics (2012), 85

Using first-principles calculations, we investigate the electronic, structural, and vibrational properties of SrZrO3. We start from the high-symmetry cubic perovskite phase, for which the phonon ... [more ▼]

Using first-principles calculations, we investigate the electronic, structural, and vibrational properties of SrZrO3. We start from the high-symmetry cubic perovskite phase, for which the phonon dispersion curves are reported.We point out the coexistence of structural antiferrodistortive instabilities at the R and M zone-boundary points and a ferroelectric instability at the zone center.We showthat the strong antiferrodistortive motions suppress ferroelectricity and are responsible for the orthorhombic ground state as in CaTiO3. The structural properties <br />of possible intermediate phases and of the orthorhombic Pnma ground state are reported. For the latter, an assignment of IR and Raman zone-center phonon modes is proposed. The main features of the ferroelectric instability are also discussed, and we show that a ferroelectric ground state can even be induced in SrZrO3 by strain engineering. [less ▲]

Detailed reference viewed: 61 (21 ULg)