References of "Alves de Sousa, Ricardo"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSingle point incremental forming simulation with adaptive remeshing technique using solid-shell elements
Sena, José; Lequesne, Cedric; Duchene, Laurent ULg et al

in Engineering Computations International Journal for Computer- Aided Engineering and Software (2016), 33(5), 1388-1421

Numerical simulation of the single point incremental forming (SPIF) processes can be very demanding and time consuming due to the constantly changing contact conditions between the tool and the sheet ... [more ▼]

Numerical simulation of the single point incremental forming (SPIF) processes can be very demanding and time consuming due to the constantly changing contact conditions between the tool and the sheet surface, as well as the nonlinear material behaviour combined with non-monotonic strain paths. The purpose of this paper is to propose an adaptive remeshing technique implemented in the in-house implicit finite element code LAGAMINE, to reduce the simulation time. This remeshing technique automatically refines only a portion of the sheet mesh in vicinity of the tool, therefore following the tool motion. As a result, refined meshes are avoided and consequently the total CPU time can be drastically reduced. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailOn the comparison of two solid-shell formulations based on in-plane reduced and full integration schemes in linear and non-linear applications
ben bettaieb, Amine; Velosa de Sena, J.I.; Alves de Sousa, Ricardo et al

in Finite Elements in Analysis and Design (2015), 107

In the present paper, a detailed description of the formulation of the new SSH3D solid-shell element is presented. This formulation is compared with the previously proposed RESS solid-shell element [1, 2 ... [more ▼]

In the present paper, a detailed description of the formulation of the new SSH3D solid-shell element is presented. This formulation is compared with the previously proposed RESS solid-shell element [1, 2]. Both elements were recently implemented within the LAGAMINE in-house research finite element code. These solid-shell elements possess eight nodes with only displacement nodal degrees of freedom (DOF). In order to overcome various locking pathologies, the SSH3D formulation employs the well known Enhanced Assumed Strain (EAS) concept originally introduced by Simo and Rifai [3] and based on the Hu-Veubeke-Washizu variational principle combined with the Assumed Natural Strain (ANS) technique based on the work of Dvorkin and Bathe [4]. For the RESS solid-shell element, on the other hand, only the EAS technique is used with a Reduced Integration (RI) Scheme. A particular characteristic of these elements is their special integration schemes, with an arbitrary number of integration points along the thickness direction, dedicated to analyze problems involving non-linear through-thickness distribution (i.e. metal forming applications) without requiring many element layers. The formulation of the SSH3D element is also particular, with regard to the solid-shell elements proposed in the literature, in the sense that it is characterized by an in-plane full integration and a large variety in terms of (i) enhancing parameters, (ii) the ANS version choice and (iii) the number of integration points through the thickness direction. The choice for these three parameters should be adapted to each problem so as to obtain accurate results and to keep the calculation time low. Numerous numerical examples are performed to investigate the performance of these elements. These examples illustrate the reliability and the efficiency of the proposed formulations in various cases including linear and non-linear problems. SSH3D element is more robust thanks to the various options proposed and its full in-plane integration scheme, while RESS element in more efficient from a computational point of view. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailEvaluation of the Enhanced Assumed Strain and Assumed Natural Strain in the SSH3D and RESS3 Solid Shell Elements for Single Point Incremental Forming Simulation
Guzmán Inostroza, Carlos Felipe ULg; Ben Bettaieb, Amine ULg; Velosa de Sena, José Ilidio et al

in Key Engineering Materials [=KEM] (2012), 504-506

Single Point Incremental Forming (SPIF) is a recent sheet forming process which can give a symmetrical or asymmetrical shape by using a small tool. Without the need of dies, the SPIF is capable to deal ... [more ▼]

Single Point Incremental Forming (SPIF) is a recent sheet forming process which can give a symmetrical or asymmetrical shape by using a small tool. Without the need of dies, the SPIF is capable to deal with rapid prototyping and small batch productions at low cost. Extensive research from both experimental and numerical sides has been carried out in the last years. Recent developments in the finite element simulations for sheet metal forming have allowed new modeling techniques, such as the Solid Shell elements, which combine the main features of shell hypothesis with a solid-brick element. In this article, two recently developed elements -SSH3D element [1, 2] and RESS3 element [3]- implemented in Lagamine (finite element code developed by the ArGEnCo department of the University of Liège) are explained and evaluated using the SPIF line test. To avoid locking problems, the well-known Enhanced Assumed Strain (EAS) and Assumed Natural Strain (ANS) techniques are used. The influence of the different EAS and ANS parameters are analysed comparing the predicted tool forces and the shape of a transversal cut, at the end of the process. The results show a strong influence of the EAS in the forces prediction, proving that a correct choice is fundamental for an accurate simulation of the SPIF using Solid Shell elements. [less ▲]

Detailed reference viewed: 160 (51 ULg)