References of "Almeida, L. A"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Size, Shape, Albedo, Density, and Atmospheric Limit of Transneptunian Object (50000) Quaoar from Multi-chord Stellar Occultations
Braga-Ribas, F.; Sicardy, B.; Ortiz, J. L. et al

in Astrophysical Journal (2013), 773

We present results derived from the first multi-chord stellar occultations by the transneptunian object (50000) Quaoar, observed on 2011 May 4 and 2012 February 17, and from a single-chord occultation ... [more ▼]

We present results derived from the first multi-chord stellar occultations by the transneptunian object (50000) Quaoar, observed on 2011 May 4 and 2012 February 17, and from a single-chord occultation observed on 2012 October 15. If the timing of the five chords obtained in 2011 were correct, then Quaoar would possess topographic features (crater or mountain) that would be too large for a body of this mass. An alternative model consists in applying time shifts to some chords to account for possible timing errors. Satisfactory elliptical fits to the chords are then possible, yielding an equivalent radius R [SUB]equiv[/SUB] = 555 ± 2.5 km and geometric visual albedo p[SUB]V[/SUB] = 0.109 ± 0.007. Assuming that Quaoar is a Maclaurin spheroid with an indeterminate polar aspect angle, we derive a true oblateness of \epsilon = 0.087^{+0.0268}_{-0.0175}, an equatorial radius of 569^{+24}_{-17} km, and a density of 1.99 ± 0.46 g cm[SUP]–3[/SUP]. The orientation of our preferred solution in the plane of the sky implies that Quaoar's satellite Weywot cannot have an equatorial orbit. Finally, we detect no global atmosphere around Quaoar, considering a pressure upper limit of about 20 nbar for a pure methane atmosphere. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailMicrolensing Discovery of a Population of Very Tight, Very Low Mass Binary Brown Dwarfs
Choi, J.-Y.; Han, C.; Udalski, A. et al

in Astrophysical Journal (2013), 768

Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD ... [more ▼]

Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M [SUB]⊙[/SUB] and 0.034 M [SUB]⊙[/SUB], and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known. The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of ~0.02 M [SUB]⊙[/SUB]. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries. [less ▲]

Detailed reference viewed: 24 (0 ULg)
Full Text
Peer Reviewed
See detailA giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251
Kains, N.; Street, R. A.; Choi, J.-Y. et al

in Astronomy and Astrophysics (2013), 552

<BR /> Aims: We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing ... [more ▼]

<BR /> Aims: We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic bulge. <BR /> Methods: Based on detailed modelling of the observed light curve, we find that the lens is composed of two masses with a mass ratio q = 1.9 × 10[SUP]-3[/SUP]. Thanks to our detection of higher-order effects on the light curve due to the Earth's orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously. <BR /> Results: We find that the lens is made up of a planet of mass 0.53 ± 0.21 M[SUB]J[/SUB] orbiting an M dwarf host star with a mass of 0.26 ± 0.11 M[SUB]⊙[/SUB]. The planetary system is located at a distance of 2.57 ± 0.61 kpc towards the Galactic centre. The projected separation of the planet from its host star is d = 1.408 ± 0.019, in units of the Einstein radius, which corresponds to 2.72 ± 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 ± 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around ~1-1.5 AU. [less ▲]

Detailed reference viewed: 31 (15 ULg)
Full Text
Peer Reviewed
See detailMOA-2010-BLG-523: "Failed Planet" = RS CVn Star
Gould, A.; Yee, J. C.; Bond, I. A. et al

in Astrophysical Journal (2013), 763

The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A [SUB]max[/SUB] ~ 265 high-magnification microlensing event. The ... [more ▼]

The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A [SUB]max[/SUB] ~ 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the light-curve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge. Based on observations made with the European Southern Observatory telescopes, Program ID 85.B-0399(I). [less ▲]

Detailed reference viewed: 20 (4 ULg)
Full Text
Peer Reviewed
See detailA New Type of Ambiguity in the Planet and Binary Interpretations of Central Perturbations of High-magnification Gravitational Microlensing Events
Choi, J.-Y.; Shin, I.-G.; Han, C. et al

in Astrophysical Journal (2012), 756

High-magnification microlensing events provide an important channel to detect planets. Perturbations near the peak of a high-magnification event can be produced either by a planet or a binary companion ... [more ▼]

High-magnification microlensing events provide an important channel to detect planets. Perturbations near the peak of a high-magnification event can be produced either by a planet or a binary companion. It is known that central perturbations induced by both types of companions can be generally distinguished due to the essentially different magnification pattern around caustics. In this paper, we present a case of central perturbations for which it is difficult to distinguish the planetary and binary interpretations. The peak of a lensing light curve affected by this perturbation appears to be blunt and flat. For a planetary case, this perturbation occurs when the source trajectory passes the negative perturbation region behind the back end of an arrowhead-shaped central caustic. For a binary case, a similar perturbation occurs for a source trajectory passing through the negative perturbation region between two cusps of an astroid-shaped caustic. We demonstrate the degeneracy for two high-magnification events of OGLE-2011-BLG-0526 and OGLE-2011-BLG-0950/MOA-2011-BLG-336. For OGLE-2011-BLG-0526, the χ[SUP]2[/SUP] difference between the planetary and binary model is ~3, implying that the degeneracy is very severe. For OGLE-2011-BLG-0950/MOA-2011-BLG-336, the stellar binary model is formally excluded with Δχ[SUP]2[/SUP] ~ 105 and the planetary model is preferred. However, it is difficult to claim a planet discovery because systematic residuals of data from the planetary model are larger than the difference between the planetary and binary models. Considering that two events observed during a single season suffer from such a degeneracy, it is expected that central perturbations experiencing this type of degeneracy is common. [less ▲]

Detailed reference viewed: 23 (5 ULg)
Full Text
Peer Reviewed
See detailCharacterizing Low-mass Binaries from Observation of Long-timescale Caustic-crossing Gravitational Microlensing Events
Shin, I.-G.; Han, C.; Choi, J.-Y. et al

in Astrophysical Journal (2012), 755

Despite the astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of ... [more ▼]

Despite the astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stellar multiplicity across a broad range of physical parameters. In this paper, we report the detections and measurements of two binaries discovered from observations of microlensing events MOA-2011-BLG-090 and OGLE-2011-BLG-0417. Determinations of the binary masses are possible by simultaneously measuring the Einstein radius and the lens parallax. The measured masses of the binary components are 0.43 M [SUB]&sun;[/SUB] and 0.39 M [SUB]&sun;[/SUB] for MOA-2011-BLG-090 and 0.57 M [SUB]&sun;[/SUB] and 0.17 M [SUB]&sun;[/SUB] for OGLE-2011-BLG-0417 and thus both lens components of MOA-2011-BLG-090 and one component of OGLE-2011-BLG-0417 are M dwarfs, demonstrating the usefulness of microlensing in detecting binaries composed of low-mass components. From modeling of the light curves considering full Keplerian motion of the lens, we also measure the orbital parameters of the binaries. The blended light of OGLE-2011-BLG-0417 comes very likely from the lens itself, making it possible to check the microlensing orbital solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries with measured physical parameters will increase in the future. [less ▲]

Detailed reference viewed: 16 (5 ULg)
Full Text
Peer Reviewed
See detailCharacterizing Lenses and Lensed Stars of High-magnification Single-lens Gravitational Microlensing Events with Lenses Passing over Source Stars
Choi, J.-Y.; Shin, I.-G.; Park, S.-Y. et al

in Astrophysical Journal (2012), 751

We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176 ... [more ▼]

We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θ[SUB]E[/SUB] ~ 0.08 mas combined with the short timescale of t [SUB]E[/SUB] ~ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ~0.84 M [SUB]&sun;[/SUB] is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio. [less ▲]

Detailed reference viewed: 17 (2 ULg)
Full Text
See detailStellar Occultations by TNOs: the January 08, 2011 by (208996) 2003 AZ84 and the May 04, 2011 by (50000) Quaoar
Braga-Ribas, F.; Sicardy, B.; Ortiz, J. L. et al

in EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France. <A href="http://meetings.copernicus.org/epsc-dps2011">http://meetings.copernicus.org/epsc-dps2011</A>, p.1060 (2011, October 01)

Between February 2010 and May 2011, our group has observed five stellar occultations by Trans-Neptunian Objects (TNOs), giving the size and shape for some of the biggest TNO's: Varuna, Eris, 2003 AZ84 ... [more ▼]

Between February 2010 and May 2011, our group has observed five stellar occultations by Trans-Neptunian Objects (TNOs), giving the size and shape for some of the biggest TNO's: Varuna, Eris, 2003 AZ84, Makemake and Quaoar. Here we present two of them: the January 08 stellar occultation by 2003 AZ84, and the May 04 by Quaoar. For the event of 2003 AZ84 we obtained one positive and another negative occultation chords in Chile. We give a lower limit to the diameter of the TNO. The event of Quaoar was observed from 16 sites distributed in Uruguay, Argentina, Chile and Brazil. Five of them yielded positive detection of the occultation. A preliminary analysis shows that the body is probably elongated and significantly bigger than the size determined by Fraser & Brown 2010, with a diameter of 890km. Using the size determined by the occultation, we will discuss the implications for the body density and albedo determination. The upper limit of the atmosphere is also studied. [less ▲]

Detailed reference viewed: 50 (0 ULg)