References of "Adami, Nicolas"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCapillary-driven bi-dimensional buoyancy in vertical soap films
Adami, Nicolas ULg; Caps, Hervé

in Europhysics Letters [=EPL] (2014)

Detailed reference viewed: 11 (0 ULg)
Full Text
See detailSurface tension and buoyancy in vertical soap films
Adami, Nicolas ULg

Doctoral thesis (2013)

This manuscrit presents our experimental works about maintained vertical soap films.

Detailed reference viewed: 49 (10 ULg)
Full Text
Peer Reviewed
See detailSingle thermal plume in locally heated vertical soap films
Adami, Nicolas ULg; Dorbolo, Stéphane ULg; Caps, Hervé ULg

in Physical Review. E : Statistical, Nonlinear, and Soft Matter Physics (2011), 84

Detailed reference viewed: 68 (33 ULg)
Full Text
Peer Reviewed
See detailFaraday instability on a network
Delon, Giles ULg; Terwagne, Denis ULg; Adami, Nicolas ULg et al

in Chaos (2010)

Detailed reference viewed: 50 (17 ULg)
Full Text
See detailFrozen Splash
Delon, Giles ULg; Terwagne, Denis ULg; Adami, Nicolas ULg et al

Poster (2010, November 21)

We have studied the splashing dynamics of water drops impacting granular layers. Depending on the drop kinetic energy, various shapes are observed for the resulting craters. Experimental parameters that ... [more ▼]

We have studied the splashing dynamics of water drops impacting granular layers. Depending on the drop kinetic energy, various shapes are observed for the resulting craters. Experimental parameters that have been considered are : the size of the millimetric droplets ; the height of the free fall, ranging from 1.5 cm to 100 cm ; and, the diam- eter of the grain. As the drop is impacting the sand layer, energy is dissipated and a splash of sand occurs. Meanwhile, surface tension, in- ertia and viscosity compete, leading to strong deformations of the drop which depend on the experimental conditions. Just after the drop en- ters into contact with the sand, imbibition takes place and increases the apparent viscosity of the fluid. The drop motion is stopped by this phenomenon. Images and fast-video recordings of the impact allowed to find scaling laws for the crater morphology and size. <br />This abstract is related to a fluid dynamics video for the APS DFD gallery of fluid motion 2010. [less ▲]

Detailed reference viewed: 46 (18 ULg)
Full Text
See detailA fountain of droplets
Terwagne, Denis ULg; Delon, Giles ULg; Adami, Nicolas ULg et al

Poster (2010, November 21)

A vessel is plunged upside down into a pool of 50 cSt silicone oil. An air bell is then created. This bell is vertically shaken at 60 Hz that leads to the oscillation of the air/oil interface. The edges ... [more ▼]

A vessel is plunged upside down into a pool of 50 cSt silicone oil. An air bell is then created. This bell is vertically shaken at 60 Hz that leads to the oscillation of the air/oil interface. The edges of the immersed vessel generate surface waves that propagate towards the center of the bell. When the amplitude of the oscillation increases, wave amplitude increases. We study the influence of the angle between successive sides on the wave patterns. Two kinds of vessel have been studied: a triangular and a square prism. The shape of the air/oil meniscus depends on the angle between the sides of the considered prism. As the amplitude of the oscillation is increased, the triple line, which is the contact line between the solid and the air/oil interface, moves up and down. Above a given acceleration that depends on the immersion depth and on the shape vessel, wave goes under the corner edge of the bell. During the oscillation, the wave generates at the edges presents a singularity that leads eventually to a jet and a drop ejection. A drop is ejected at each oscillation. More complicated ejection can be produced with further increase of the amplitude. This is a sample arXiv article illustrating the use of fluid dynamics videos. [less ▲]

Detailed reference viewed: 15 (1 ULg)
Full Text
See detailA fountain of droplets
Terwagne, Denis ULg; Delon, Giles ULg; Adami, Nicolas ULg et al

Poster (2010, November)

A vessel is plunged upside down into a pool of 50 cSt silicone oil. An air bell is then created. This bell is vertically shaken at 60 Hz that leads to the oscillation of the air/oil interface. The edges ... [more ▼]

A vessel is plunged upside down into a pool of 50 cSt silicone oil. An air bell is then created. This bell is vertically shaken at 60 Hz that leads to the oscillation of the air/oil interface. The edges of the immersed vessel generate surface waves that propagate towards the center of the bell. When the amplitude of the oscillation increases, wave amplitude increases. We study the influence of the angle between successive sides on the wave patterns. Two kinds of vessel have been studied: a triangular and a square prism. The shape of the air/oil meniscus depends on the angle between the sides of the considered prism. As the amplitude of the oscillation is increased, the triple line, which is the contact line between the solid and the air/oil interface, moves up and down. Above a given acceleration that depends on the immersion depth and on the shape vessel, wave goes under the corner edge of the bell. During the oscillation, the wave generates at the edges presents a singularity that leads eventually to a jet and a drop ejection. A drop is ejected at each oscillation. More complicated ejection can be produced with further increase of the amplitude. This is a sample arXiv article illustrating the use of fluid dynamics videos. [less ▲]

Detailed reference viewed: 13 (3 ULg)
Full Text
See detailFaraday instability on a network
Delon, Giles ULg; Terwagne, Denis ULg; Adami, Nicolas ULg et al

Poster (2010, March)

Detailed reference viewed: 20 (9 ULg)