References of "Adachi, J. D"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailManagement of glucocorticoid-induced osteoporosis
Rizzoli, R.; Adachi, J. D.; Cooper, C. et al

in Calcified Tissue International (2012), 91(4), 225-243

This review summarizes the available evidence-based data that form the basis for therapeutic intervention and covers the current status of glucocorticoid-induced osteoporosis (GIOP) management, regulatory ... [more ▼]

This review summarizes the available evidence-based data that form the basis for therapeutic intervention and covers the current status of glucocorticoid-induced osteoporosis (GIOP) management, regulatory requirements, and risk-assessment options. Glucocorticoids are known to cause bone loss and fractures, yet many patients receiving or initiating glucocorticoid therapy are not appropriately evaluated and treated. An European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis workshop was convened to discuss GIOP management and to provide a report by a panel of experts. An expert panel reviewed the available studies that discussed approved therapeutic agents, focusing on randomized and controlled clinical trials reporting on bone mineral density and/or fracture risk of at least 48 weeks' duration. There is no evidence that GIOP and postmenopausal osteoporosis respond differently to treatments. The FRAX algorithm can be adjusted according to glucocorticoid dose. Available antiosteoporotic therapies such as bisphosphonates and teriparatide are efficacious in GIOP management. Several other agents approved for the treatment of postmenopausal osteoporosis may become available for GIOP. It is advised to stop antiosteoporotic treatment after glucocorticoid cessation, unless the patient remains at increased risk of fracture. Calcium and vitamin D supplementation as an osteoporosis-prevention measure is less effective than specific antiosteoporotic treatment. Fracture end-point studies and additional studies investigating specific subpopulations (pediatric, premenopausal, or elderly patients) would strengthen the evidence base and facilitate the development of intervention thresholds and treatment guidelines. © Springer Science+Business Media, LLC 2012. [less ▲]

Detailed reference viewed: 8 (1 ULg)
Full Text
Peer Reviewed
See detailIbandronate for the prevention of nonvertebral fractures: a pooled analysis of individual patient data.
Cranney, Ann; Wells, G. A.; Yetisir, E. et al

in Osteoporosis International (2009), 20(2), 291-7

SUMMARY: This analysis was conducted to assess the effect of high versus lower doses of ibandronate on nonvertebral fractures. The results were adjusted for clinical fracture, age, and bone density. The ... [more ▼]

SUMMARY: This analysis was conducted to assess the effect of high versus lower doses of ibandronate on nonvertebral fractures. The results were adjusted for clinical fracture, age, and bone density. The treatment effect was dose-dependent. Higher doses of ibandronate significantly reduced the risk of nonvertebral fractures more effectively compared with lower doses. INTRODUCTION: The objective of this study was to assess the efficacy of different doses of ibandronate on nonvertebral fractures in a pooled analysis. METHODS: Eight randomized trials of ibandronate were reviewed for inclusion. Alternative definitions of high versus low doses based on annual cumulative exposure (ACE) were explored. A time-to-event analysis was conducted using Kaplan-Meier methodology. Hazard ratios (HR) were derived using Cox regression and adjusted for covariates. RESULTS: Combining higher ACE doses of > or = 10.8 mg (150 mg once monthly, 3 mg i.v. quarterly, and 2 mg i.v. every 2 months) versus ACE doses of 5.5 mg, from two trials, resulted in an HR 0.62 (95% CI 0.396-0.974, p = 0.038). There was a dose-response trend with increasing ACE doses (7.2-12 mg) versus ACE of 5.5 mg. CONCLUSIONS: A dose-response effect on nonvertebral fractures was observed when comparing high with low ACE doses. A significant reduction in nonvertebral fractures was noted when pooling data from trials using ACE doses of > or = 10.8 mg versus ACE < or = 7.2 mg; and with ACE > or = 10.8 mg versus ACE of 5.5 mg (38% reduction). Higher ibandronate dose levels (150 mg monthly or 3 mg i.v. quarterly) significantly reduced nonvertebral fracture risk in postmenopausal women. [less ▲]

Detailed reference viewed: 60 (4 ULg)