References of "Absil, Olivier"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOn-sky performance of the QACITS pointing control technique with the Keck/NIRC2 vortex coronagraph
Huby, Elsa ULg; Bottom, Michael; Femenia, Bruno et al

in Astronomy and Astrophysics (in press)

A vortex coronagraph is now available for high contrast observations with the Keck/NIRC2 instrument at L band. Reaching the optimal performance of the coronagraph requires fine control of the wavefront ... [more ▼]

A vortex coronagraph is now available for high contrast observations with the Keck/NIRC2 instrument at L band. Reaching the optimal performance of the coronagraph requires fine control of the wavefront incident on the phase mask. In particular, centering errors can lead to significant stellar light leakage that degrades the contrast performance and prevents the observation of faint planetary companions around the observed stars. It is thus critical to correct for the possible slow drift of the star image from the phase mask center, generally due to mechanical flexures induced by temperature and/or gravity field variation, or to misalignment between the optics that rotate in pupil tracking mode. A control loop based on the QACITS algorithm for the vortex coronagraph has thus been developed and deployed for the Keck/NIRC2 instrument. This algorithm executes the entire observing sequence, including the calibration steps, initial centering of the star on the vortex center and stabilisation during the acquisition of science frames. On-sky data show that the QACITS control loop stabilizes the position of the star image down to 2.4 mas rms at a frequency of about 0.02 Hz. However, the accuracy of the estimator is probably limited by a systematic error due to a misalignment of the Lyot stop with respect to the entrance pupil, estimated to be on the order of 4.5 mas. A method to reduce the amplitude of this bias down to 1 mas is proposed. The QACITS control loop has been successfully implemented and provides a robust method to center and stabilize the star image on the vortex mask. In addition, QACITS ensures a repeatable pointing quality and significantly improves the observing efficiency compared to manual operations. It is now routinely used for vortex coronagraph observations at Keck/NIRC2, providing contrast and angular resolution capabilities suited for exoplanet and disk imaging. [less ▲]

Detailed reference viewed: 21 (2 ULg)
Full Text
Peer Reviewed
See detailResolved astrometric orbits of ten O-type binaries
Le Bouquin, J.-B.; Sana, H.; Gosset, Eric ULg et al

in Astronomy and Astrophysics (in press)

Our long term aim is to derive model-independent stellar masses and distances for long period massive binaries by combining apparent astrometric orbit with double-lined radial velocity amplitudes (SB2 ... [more ▼]

Our long term aim is to derive model-independent stellar masses and distances for long period massive binaries by combining apparent astrometric orbit with double-lined radial velocity amplitudes (SB2). We follow-up ten O+O binaries with AMBER, PIONIER and GRAVITY at the VLTI. Here, we report about 130 astrometric observations over the last 7 years. We combine this dataset with distance estimates to compute the total mass of the systems. We also compute preliminary individual component masses for the five systems with available SB2 radial velocities. Nine over the ten binaries have their three dimensional orbit well constrained. Four of them are known colliding wind, non-thermal radio emitters, and thus constitute valuable targets for future high angular resolution radio imaging. Two binaries break the correlation between period and eccentricity tentatively observed in previous studies. It suggests either that massive star formation produce a wide range of systems, or that several binary formation mechanisms are at play. Finally, we found that the use of existing SB2 radial velocity amplitudes can lead to unrealistic masses and distances. If not understood, the biases in radial velocity amplitudes will represent an intrinsic limitation for estimating dynamical masses from SB2+interferometry or SB2+Gaia. Nevertheless, our results can be combined with future Gaia astrometry to measure the dynamical masses and distances of the individual components with an accuracy of 5 to 15\%, completely independently of the radial velocities. [less ▲]

Detailed reference viewed: 23 (3 ULg)
Full Text
Peer Reviewed
See detailStructure of Herbig AeBe disks at the milliarcsecond scale. A statistical survey in the H band using PIONIER-VLTI
Lazareff, B.; Berger, J.-P.; Kluska, J. et al

in Astronomy and Astrophysics (in press)

Context. It is now generally accepted that the near-infrared excess of Herbig AeBe stars originates in the dust of a circumstellar disk. Aims. The aims of this article are to infer the radial and vertical ... [more ▼]

Context. It is now generally accepted that the near-infrared excess of Herbig AeBe stars originates in the dust of a circumstellar disk. Aims. The aims of this article are to infer the radial and vertical structure of these disks at scales of order one au, and the properties of the dust grains. Methods. The program objects (51 in total) were observed with the H-band (1.6micron) PIONIER/VLTI interferometer. The largest baselines allowed us to resolve (at least partially) structures of a few tenths of an au at typical distances of a few hundred parsecs. Dedicated UBVRIJHK photometric measurements were also obtained. Spectral and 2D geometrical parameters are extracted via fits of a few simple models: ellipsoids and broadened rings with azimuthal modulation. Model bias is mitigated by parallel fits of physical disk models. Sample statistics were evaluated against similar statistics for the physical disk models to infer properties of the sample objects as a group. Results. We find that dust at the inner rim of the disk has a sublimation temperature Tsub~1800K. A ring morphology is confirmed for approximately half the resolved objects; these rings are wide delta_r>=0.5. A wide ring favors a rim that, on the star-facing side, looks more like a knife edge than a doughnut. The data are also compatible with a the combination of a narrow ring and an inner disk of unspecified nature inside the dust sublimation radius. The disk inner part has a thickness z/r~0.2, flaring to z/r~0.5 in the outer part. We confirm the known luminosity-radius relation; a simple physical model is consistent with both the mean luminosity-radius relation and the ring relative width; however, a significant spread around the mean relation is present. In some of the objects we find a halo component, fully resolved at the shortest interferometer spacing, that is related to the HAeBe class. [less ▲]

Detailed reference viewed: 14 (2 ULg)
Full Text
Peer Reviewed
See detailVLT/SPHERE robust astrometry of the HR8799 planets at milliarcsecond-level accuracy. Orbital architecture analysis with PyAstrOFit
Wertz, Olivier; Absil, Olivier ULg; Gómez González, Carlos ULg et al

in Astronomy and Astrophysics (2017), 598

HR8799 is orbited by at least four giant planets, making it a prime target for the recently commissioned Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE). As such, it was observed on ... [more ▼]

HR8799 is orbited by at least four giant planets, making it a prime target for the recently commissioned Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE). As such, it was observed on five consecutive nights during the SPHERE science verification in December 2014. We aim to take full advantage of the SPHERE capabilities to derive accurate astrometric measurements based on H-band images acquired with the Infra-Red Dual-band Imaging and Spectroscopy (IRDIS) subsystem, and to explore the ultimate astrometric performance of SPHERE in this observing mode. We also aim to present a detailed analysis of the orbital parameters for the four planets. We report the astrometric positions for epoch 2014.93 with an accuracy down to 2.0 mas, mainly limited by the astrometric calibration of IRDIS. For each planet, we derive the posterior probability density functions for the six Keplerian elements and identify sets of highly probable orbits. For planet d, there is clear evidence for nonzero eccentricity ($e \simeq 0.35$), without completely excluding solutions with smaller eccentricities. The three other planets are consistent with circular orbits, although their probability distributions spread beyond $e = 0.2$, and show a peak at $e \simeq 0.1$ for planet e. The four planets have consistent inclinations of about $30\deg$ with respect to the sky plane, but the confidence intervals for the longitude of ascending node are disjoint for planets b and c, and we find tentative evidence for non-coplanarity between planets b and c at the $2 \sigma$ level. [less ▲]

Detailed reference viewed: 20 (1 ULg)
Full Text
Peer Reviewed
See detailFirst scattered-light images of the gas-rich debris disk around 49 Ceti
Choquet, É.; Milli, J.; Wahhaj, Z. et al

in Astrophysical Journal Letters (2017), 834(2), 12

We present the first scattered-light images of the debris disk around 49 ceti, a ~40 Myr A1 main sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and ... [more ▼]

We present the first scattered-light images of the debris disk around 49 ceti, a ~40 Myr A1 main sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS F110W images, as well as new coronagraphic H band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.1" (65 AU) to 4.6" (250 AU), and is seen at an inclination of 73degr, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M_Jup at projected separations beyond 20 AU from the star (0.34"). Comparison between the F110W and H-band images is consistent with a grey color of 49 ceti's dust, indicating grains larger than >2microns. Our photometric measurements indicate a scattering efficiency / infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 ceti and hypothetic scenarios for the gas nature and origin. [less ▲]

Detailed reference viewed: 13 (1 ULg)
Full Text
Peer Reviewed
See detailThe W. M. Keck Observatory infrared vortex coronagraph and a first image of HIP79124 B
Serabyn, Eugene; Huby, Elsa ULg; Matthews, Keith et al

in Astronomical Journal (The) (2017), 153(1), 43

An optical vortex coronagraph has been implemented within the NIRC2 camera on the Keck II telescope and used to carry out on-sky tests and observations. The development of this new L'-band observational ... [more ▼]

An optical vortex coronagraph has been implemented within the NIRC2 camera on the Keck II telescope and used to carry out on-sky tests and observations. The development of this new L'-band observational mode is described, and an initial demonstration of the new capability is presented: a resolved image of the low-mass companion to HIP79124, which had previously been detected by means of interferometry. With HIP79124 B at a projected separation of 186.5 mas, both the small inner working angle of the vortex coronagraph and the related imaging improvements were crucial in imaging this close companion directly. Due to higher Strehl ratios and more relaxed contrasts in L' band versus H band, this new coronagraphic capability will enable high-contrast small-angle observations of nearby young exoplanets and disks on a par with those of shorter-wavelength extreme adaptive optics coronagraphs. [less ▲]

Detailed reference viewed: 22 (4 ULg)
Full Text
Peer Reviewed
See detailCharacterization of the inner disk around HD 141569 A from Keck/NIRC2 L-band vortex coronagraphy
Mawet, Dimitri; Choquet, Élodie; Absil, Olivier ULg et al

in Astronomical Journal (The) (2017), 153(1), 44

HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a ... [more ▼]

HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L' band (3.8 micron) during the commissioning of the vector vortex coronagraph recently installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point spread function subtraction, which reveals the innermost disk component from the inner working distance of $\simeq 23$ AU and up to $\simeq 70$ AU. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N and 8.6 micron PAH emission reported earlier. We also see an outward progression in dust location from the L'-band to the H-band (VLT/SPHERE image) to the visible (HST/STIS image), likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST NICMOS in 1999 (respectively at 406 and 245 AU). We fit our new L'-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains, and are consistent with the composition of the outer belts. While our image shows a putative very-faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses. [less ▲]

Detailed reference viewed: 16 (2 ULg)
Full Text
Peer Reviewed
See detailDiscovery of a low-mass companion inside the debris ring surrounding the F5V star HD 206893
Milli, J.; Hibon, P.; Christiaens, Valentin ULg et al

in Astronomy and Astrophysics (2017), 597

<BR /> Aims: Uncovering the ingredients and the architecture of planetary systems is a very active field of research that has fuelled many new theories on giant planet formation, migration, composition ... [more ▼]

<BR /> Aims: Uncovering the ingredients and the architecture of planetary systems is a very active field of research that has fuelled many new theories on giant planet formation, migration, composition, and interaction with the circumstellar environment. We aim at discovering and studying new such systems, to further expand our knowledge of how low-mass companions form and evolve. <BR /> Methods: We obtained high-contrast H-band images of the circumstellar environment of the F5V star HD 206893, known to host a debris disc never detected in scattered light. These observations are part of the SPHERE High Angular Resolution Debris Disc Survey (SHARDDS) using the InfraRed Dual-band Imager and Spectrograph (IRDIS) installed on VLT/SPHERE. <BR /> Results: We report the detection of a source with a contrast of 3.6 × 10[SUP]-5[/SUP] in the H-band, orbiting at a projected separation of 270 milliarcsec or 10 au, corresponding to a mass in the range 24 to 73 M[SUB]Jup[/SUB] for an age of the system in the range 0.2 to 2 Gyr. The detection was confirmed ten months later with VLT/NaCo, ruling out a background object with no proper motion. A faint extended emission compatible with the disc scattered light signal is also observed. <BR /> Conclusions: The detection of a low-mass companion inside a massive debris disc makes this system an analog of other young planetary systems such as β Pictoris, HR 8799 or HD 95086 and requires now further characterisation of both components to understand their interactions. [less ▲]

Detailed reference viewed: 9 (3 ULg)
Full Text
Peer Reviewed
See detailThe SHARDDS survey: First resolved image of the HD 114082 debris disk in the Lower Centaurus Crux with SPHERE
Wahhaj, Zahed; Milli, Julien; Kennedy, Grant et al

in Astronomy and Astrophysics (2016), 596

We present the first resolved image of the debris disk around the 16 ± 8 Myr old star, HD 114082. The observation was made in the H-band using the SPHERE instrument. The star is at a distance of 92 ± 6 pc ... [more ▼]

We present the first resolved image of the debris disk around the 16 ± 8 Myr old star, HD 114082. The observation was made in the H-band using the SPHERE instrument. The star is at a distance of 92 ± 6 pc in the Lower Centaurus Crux association. Using a Markov chain Monte Carlo analysis, we determined that the debris is likely in the form of a dust ring with an inner edge of 27.7[SUP]+2.8[/SUP][SUB]-3.5[/SUB] au, position angle -74.3°[SUP]+0.5[/SUP][SUB]-1.5[/SUB], and an inclination with respect to the line of sight of 6.7°[SUP]+3.8[/SUP][SUB]-0.4[/SUB]. The disk imaged in scattered light has a surface density that is declining with radius of r[SUP]-4[/SUP], which is steeper than expected for grain blowout by radiation pressure. We find only marginal evidence (2σ) of eccentricity and rule out planets more massive than 1.0 M[SUB]Jup[/SUB] orbiting within 1 au of the inner edge of the ring, since such a planet would have disrupted the disk. The disk has roughly the same fractional disk luminosity (L[SUB]disk[/SUB]/L[SUB]∗[/SUB] = 3.3 × 10[SUP]-3[/SUP]) as HR 4796 A and β Pictoris, however it was not detected by previous instrument facilities most likely because of its small angular size (radius 0.4''), low albedo ( 0.2), and low scattering efficiency far from the star due to high scattering anisotropy. With the arrival of extreme adaptive optics systems, such as SPHERE and GPI, the morphology of smaller, fainter, and more distant debris disks are being revealed, providing clues to planet-disk interactions in young protoplanetary systems. The reduced images are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/L4">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/L4</A> [less ▲]

Detailed reference viewed: 5 (1 ULg)
Full Text
Peer Reviewed
See detailOptimizing the subwavelength grating of L-band annular groove phase masks for high coronagraphic performance
Vargas Catalán, E.; Huby, Elsa ULg; Forsberg, P. et al

in Astronomy and Astrophysics (2016), 595

Context. The annular groove phase mask (AGPM) is one possible implementation of the vector vortex coronagraph, where the helical phase ramp is produced by a concentric subwavelength grating. For several ... [more ▼]

Context. The annular groove phase mask (AGPM) is one possible implementation of the vector vortex coronagraph, where the helical phase ramp is produced by a concentric subwavelength grating. For several years, we have been manufacturing AGPMs by etching gratings into synthetic diamond substrates using inductively coupled plasma etching. <BR /> Aims: We aim to design, fabricate, optimize, and evaluate new L-band AGPMs that reach the highest possible coronagraphic performance, for applications in current and forthcoming infrared high-contrast imagers. <BR /> Methods: Rigorous coupled wave analysis (RCWA) is used for designing the subwavelength grating of the phase mask. Coronagraphic performance evaluation is performed on a dedicated optical test bench. The experimental results of the performance evaluation are then used to accurately determine the actual profile of the fabricated gratings, based on RCWA modeling. <BR /> Results: The AGPM coronagraphic performance is very sensitive to small errors in etch depth and grating profile. Most of the fabricated components therefore show moderate performance in terms of starlight rejection (a few 100:1 in the best cases). Here we present new processes for re-etching the fabricated components in order to optimize the parameters of the grating and hence significantly increase their coronagraphic performance. Starlight rejection up to 1000:1 is demonstrated in a broadband L filter on the coronagraphic test bench, which corresponds to a raw contrast of about 10[SUP]-5[/SUP] at two resolution elements from the star for a perfect input wave front on a circular, unobstructed aperture. <BR /> Conclusions: Thanks to their exquisite performance, our latest L-band AGPMs are good candidates for installation in state of the art and future high-contrast thermal infrared imagers, such as METIS for the E-ELT. [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
Peer Reviewed
See detailA near-infrared interferometric survey of debris-disc stars. V. PIONIER search for variability
Ertel, S.; Defrere, Denis ULg; Absil, Olivier ULg et al

in Astronomy and Astrophysics (2016), 595

Context. Extended circumstellar emission has been detected within a few 100 milli-arcsec around ≳10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other ... [more ▼]

Context. Extended circumstellar emission has been detected within a few 100 milli-arcsec around ≳10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other techniques, should they yield similar results or non-detections, can provide strong constraints on the origin of the emission. They can also reveal the variability of the phenomenon. Aims: We aim to demonstrate the persistence of the phenomenon over the timescale of a few years and to search for variability of our previously detected excesses. Methods: Using Very Large Telescope Interferometer (VLTI)/Precision Integrated Optics Near Infrared ExpeRiment (PIONIER) in H band we have carried out multi-epoch observations of the stars for which a near-infrared excess was previously detected using the same observation technique and instrument. The detection rates and distribution of the excesses from our original survey and the follow-up observations are compared statistically. A search for variability of the excesses in our time series is carried out based on the level of the broadband excesses. Results: In 12 of 16 follow-up observations, an excess is re-detected with a significance of > 2σ, and in 7 of 16 follow-up observations significant excess (> 3σ) is re-detected. We statistically demonstrate with very high confidence that the phenomenon persists for the majority of the systems. We also present the first detection of potential variability in two sources. Conclusions: We conclude that the phenomenon responsible for the excesses persists over the timescale of a few years for the majority of the systems. However, we also find that variability intrinsic to a target can cause it to have no significant excess at the time of a specific observation. [less ▲]

Detailed reference viewed: 21 (8 ULg)
Full Text
Peer Reviewed
See detailExocomet signatures around the A-shell star φ Leonis?
Eiroa, C.; Rebollido, I.; Montesinos, B. et al

in Astronomy and Astrophysics (2016), 594

We present an intensive monitoring of high-resolution spectra of the Ca ii K line in the A7IV shell star φ Leo at very short (minutes, hours), short (night to night), and medium (weeks, months) timescales ... [more ▼]

We present an intensive monitoring of high-resolution spectra of the Ca ii K line in the A7IV shell star φ Leo at very short (minutes, hours), short (night to night), and medium (weeks, months) timescales. The spectra show remarkable variable absorptions on timescales of hours, days, and months. The characteristics of these sporadic events are very similar to most that are observed toward the debris disk host star β Pic, which are commonly interpreted as signs of the evaporation of solid, comet-like bodies grazing or falling onto the star. Therefore, our results suggest the presence of solid bodies around φ Leo. To our knowledge, with the exception of β Pic, our monitoring has the best time resolution at the mentioned timescales for a star with events attributed to exocomets. Assuming the cometary scenario and considering the timescales of our monitoring, our results indicate that φ Leo presents the richest environment with comet-like events known to date, second only to β Pic. [less ▲]

Detailed reference viewed: 12 (2 ULg)
Full Text
See detailPreliminary optical design for the common fore optics of METIS
Agócs, Tibor; Brandl, Bernhard R.; Jager, Rieks et al

in Evans, C.; Simard, L.; Takami, H. (Eds.) Ground-based and Airborne Instrumentation for Astronomy VI (2016, August 09)

METIS is the Mid-infrared E-ELT Imager and Spectrograph, which will provide outstanding observing capabilities, focusing on high angular and spectral resolution. It consists of two diffraction-limited ... [more ▼]

METIS is the Mid-infrared E-ELT Imager and Spectrograph, which will provide outstanding observing capabilities, focusing on high angular and spectral resolution. It consists of two diffraction-limited imagers operating in the LM and NQ bands respectively and an IFU fed diffraction-limited high-resolution (R=100,000) LM band spectrograph. These science subsystems are preceded by the common fore optics (CFO), which provides the following essential functionalities: calibration, chopping, image de-rotation, thermal background and stray light reduction. We show the evolution of the CFO optical design from the conceptual design to the preliminary optical design, detail the optimization steps and discuss the necessary trade-offs. [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
See detailHigh-contrast imaging with METIS
Kenworthy, Matthew A.; Absil, Olivier ULg; Agócs, Tibor et al

in Evans, C.; Simard, L.; Takami, H. (Eds.) Ground-based and Airborne Instrumentation for Astronomy VI (2016, August 09)

The Mid-infrared E-ELT Imager and Spectrograph (METIS) for the European Extremely Large Telescope (E-ELT) consists of diffraction-limited imagers that cover 3 to 14 microns with medium resolution (R 5000 ... [more ▼]

The Mid-infrared E-ELT Imager and Spectrograph (METIS) for the European Extremely Large Telescope (E-ELT) consists of diffraction-limited imagers that cover 3 to 14 microns with medium resolution (R 5000) long slit spectroscopy, and an integral field spectrograph for high spectral resolution spectroscopy (R 100,000) over the L and M bands. One of the science cases that METIS addresses is the characterization of faint circumstellar material and exoplanet companions through imaging and spectroscopy. We present our approach for high contrast imaging with METIS, covering diffraction suppression with coronagraphs, the removal of slowly changing optical aberrations with focal plane wavefront sensing, interferometric imaging with sparse aperture masks, and observing strategies for both the imagers and IFU image slicers. [less ▲]

Detailed reference viewed: 12 (0 ULg)
See detailMaking high-accuracy null depth measurements for the LBTI exozodi survey
Mennesson, Bertrand; Defrere, Denis ULg; Nowak, Matthias et al

in Malbet, F.; Creech-Eakman, M.; Tuthill, P. (Eds.) Optical and Infrared Interferometry and Imaging V (2016, August 04)

The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass ... [more ▼]

The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of 12 zodis per star, for a representative ensemble of 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 σ measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation ("null") levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI. [less ▲]

Detailed reference viewed: 14 (4 ULg)
See detailThe path to interferometry in space
Rinehart, S. A.; Savini, G.; Holland, W. et al

in Malbet, F.; Creech-Eakman, M.; Tuthill, P. (Eds.) Optical and Infrared Interferometry and Imaging V (2016, August 04)

For over two decades, astronomers have considered the possibilities for interferometry in space. The first of these missions was the Space Interferometry Mission (SIM), but that was followed by missions ... [more ▼]

For over two decades, astronomers have considered the possibilities for interferometry in space. The first of these missions was the Space Interferometry Mission (SIM), but that was followed by missions for studying exoplanets (e.g Terrestrial Planet Finder, Darwin), and then far-infrared interferometers (e.g. the Space Infrared Interferometric Telescope, the Far-Infrared Interferometer). Unfortunately, following the cancellation of SIM, the future for space-based interferometry has been in doubt, and the interferometric community needs to reevaluate the path forward. While interferometers have strong potential for scientific discovery, there are technological developments still needed, and continued maturation of techniques is important for advocacy to the broader astronomical community. We review the status of several concepts for space-based interferometry, and look for possible synergies between missions oriented towards different science goals. [less ▲]

Detailed reference viewed: 11 (2 ULg)
Full Text
See detailEnd-to-end simulations of the E-ELT/METIS coronagraphs
Carlomagno, Brunella ULg; Absil, Olivier ULg; Kenworthy, Matthew et al

in Marchetti, E.; Close, L.; Véran, J.-P. (Eds.) Adaptive Optics Systems V (2016, July 27)

The direct detection of low-mass planets in the habitable zone of nearby stars is an important science case for future E-ELT instruments such as the mid-infrared imager and spectrograph METIS, which ... [more ▼]

The direct detection of low-mass planets in the habitable zone of nearby stars is an important science case for future E-ELT instruments such as the mid-infrared imager and spectrograph METIS, which features vortex phase masks and apodizing phase plates (APP) in its baseline design. In this work, we present end-to-end performance simulations, using Fourier propagation, of several METIS coronagraphic modes, including focal-plane vortex phase masks and pupil-plane apodizing phase plates, for the centrally obscured, segmented E-ELT pupil. The atmosphere and the AO contributions are taken into account. Hybrid coronagraphs combining the advantages of vortex phase masks and APPs are considered to improve the METIS coronagraphic performance. [less ▲]

Detailed reference viewed: 18 (3 ULg)
Full Text
See detailCommissioning and first light results of an L'-band vortex coronagraph with the Keck II adaptive optics NIRC2 science instrument
Femenía Castellá, Bruno; Serabyn, Eugene; Mawet, Dimitri et al

in Marchetti, E.; Close, L.; Véran, J.-P. (Eds.) Adaptive Optics Systems V (2016, July 26)

On March 2015 an L'-band vortex coronagraph based on an Annular Groove Phase Mask made up of a diamond sub-wavelength grating was installed on NIRC2 as a demonstration project. This vortex coronagraph ... [more ▼]

On March 2015 an L'-band vortex coronagraph based on an Annular Groove Phase Mask made up of a diamond sub-wavelength grating was installed on NIRC2 as a demonstration project. This vortex coronagraph operates in the L' band not only in order to take advantage from the favorable star/planet contrast ratio when observing beyond the K band, but also to exploit the fact that the Keck II Adaptive Optics (AO) system delivers nearly extreme adaptive optics image quality (Strehl ratios values near 90%) at 3.7μm. We describe the hardware installation of the vortex phase mask during a routine NIRC2 service mission. The success of the project depends on extensive software development which has allowed the achievement of exquisite real-time pointing control as well as further contrast improvements by using speckle nulling to mitigate the effect of static speckles. First light of the new coronagraphic mode was on June 2015 with already very good initial results. Subsequent commissioning nights were interlaced with science nights by members of the VORTEX team with their respective scientific programs. The new capability and excellent results so far have motivated the VORTEX team and the Keck Science Steering Committee (KSSC) to offer the new mode in shared risk mode for 2016B. [less ▲]

Detailed reference viewed: 19 (2 ULg)
Full Text
See detailThe QACITS pointing sensor: from theory to on-sky operation on Keck/NIRC2
Huby, Elsa ULg; Absil, Olivier ULg; Mawet, Dimitri et al

in Marchetti, E.; Close, L.; Véran, J.-P. (Eds.) Adaptive Optics Systems V (2016, July 26)

Small inner working angle coronagraphs are essential to benefit from the full potential of large and future extremely large ground-based telescopes, especially in the context of the detection and ... [more ▼]

Small inner working angle coronagraphs are essential to benefit from the full potential of large and future extremely large ground-based telescopes, especially in the context of the detection and characterization of exoplanets. Among existing solutions, the vortex coronagraph stands as one of the most effective and promising solutions. However, for focal-plane coronagraph, a small inner working angle comes necessarily at the cost of a high sensitivity to pointing errors. This is the reason why a pointing control system is imperative to stabilize the star on the vortex center against pointing drifts due to mechanical flexures, that generally occur during observation due for instance to temperature and/or gravity variations. We have therefore developed a technique called QACITS[SUP]1[/SUP] (Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing), which is based on the analysis of the coronagraphic image shape to infer the amount of pointing error. It has been shown that the flux gradient in the image is directly related to the amount of tip-tilt affecting the beam. The main advantage of this technique is that it does not require any additional setup and can thus be easily implemented on all current facilities equipped with a vortex phase mask. In this paper, we focus on the implementation of the QACITS sensor at Keck/NIRC2, where an L-band AGPM has been recently commissioned (June and October 2015), successfully validating the QACITS estimator in the case of a centrally obstructed pupil. The algorithm has been designed to be easily handled by any user observing in vortex mode, which is available for science in shared risk mode since 2016B. [less ▲]

Detailed reference viewed: 3 (1 ULg)
Full Text
Peer Reviewed
See detailPolarization Measurements of Hot Dust Stars and the Local Interstellar Medium
Marshall, J. P.; Cotton, D. V.; Bott, K. et al

in Astrophysical Journal (2016), 825

Debris discs are typically revealed through the presence of excess emission at infrared wavelengths. Most discs exhibit excess at mid- and far-infrared wavelengths, analogous to the solar system’s ... [more ▼]

Debris discs are typically revealed through the presence of excess emission at infrared wavelengths. Most discs exhibit excess at mid- and far-infrared wavelengths, analogous to the solar system’s Asteroid and Edgeworth-Kuiper belts. Recently, stars with strong (˜1%) excess at near-infrared wavelengths were identified through interferometric measurements. Using the HIgh Precision Polarimetric Instrument, we examined a sub-sample of these hot dust stars (and appropriate controls) at parts-per-million sensitivity in SDSS g‧ (green) and r‧ (red) filters for evidence of scattered light. No detection of strongly polarized emission from the hot dust stars is seen. We, therefore, rule out scattered light from a normal debris disk as the origin of this emission. A wavelength-dependent contribution from multiple dust components for hot dust stars is inferred from the dispersion (the difference in polarization angle in red and green) of southern stars. Contributions of 17 ppm (green) and 30 ppm (red) are calculated, with strict 3-σ upper limits of 76 and 68 ppm, respectively. This suggests weak hot dust excesses consistent with thermal emission, although we cannot rule out contrived scenarios, e.g., dust in a spherical shell or face-on discs. We also report on the nature of the local interstellar medium (ISM), obtained as a byproduct of the control measurements. Highlights include the first measurements of the polarimetric color of the local ISM and the discovery of a southern sky region with a polarization per distance thrice the previous maximum. The data suggest that λ [SUB]max[/SUB], the wavelength of maximum polarization, is bluer than typical. [less ▲]

Detailed reference viewed: 11 (1 ULg)