References of "Zervosen, Astrid"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailStructure-Guided Design of Cell Wall Biosynthesis Inhibitors That Overcome beta-Lactam Resistance in Staphylococcus aureus (MRSA).
Contreras-Martel, Carlos; Amoroso, Ana Maria ULg; Woon, Esther C.Y. et al

in ACS Chemical Biology (2011)

beta-Lactam antibiotics have long been a treatment of choice for bacterial infections since they bind irreversibly to Penicillin-Binding Proteins (PBPs), enzymes that are vital for cell wall biosynthesis ... [more ▼]

beta-Lactam antibiotics have long been a treatment of choice for bacterial infections since they bind irreversibly to Penicillin-Binding Proteins (PBPs), enzymes that are vital for cell wall biosynthesis. Many pathogens express drug-insensitive PBPs rendering beta-lactams ineffective, revealing a need for new types of PBP inhibitors active against resistant strains. We have identified alkyl boronic acids that are active against pathogens including methicillin-resistant S. aureus (MRSA). The crystal structures of PBP1b complexed to 11 different alkyl boronates demonstrate that in vivo efficacy correlates with the mode of inhibitor side chain binding. Staphylococcal membrane analyses reveal that the most potent alkyl boronate targets PBP1, an autolysis system regulator, and PBP2a, a low beta-lactam affinity enzyme. This work demonstrates the potential of boronate-based PBP inhibitors for circumventing beta-lactam resistance and opens avenues for the development of novel antibiotics that target Gram-positive pathogens. [less ▲]

Detailed reference viewed: 50 (5 ULg)
Full Text
Peer Reviewed
See detailNew noncovalent inhibitors of penicillin-binding proteins from penicillin-resistant bacteria.
Turk, Samo; Verlaine, Olivier ULg; Gerards, Thomas ULg et al

in PloS one (2011), 6(5), 19418

BACKGROUND: Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs beta-lactams inhibit transpeptidase ... [more ▼]

BACKGROUND: Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs beta-lactams inhibit transpeptidase activity of PBPs by forming a covalent penicilloyl-enzyme complex that blocks the normal transpeptidation reaction; this finally results in bacterial death. In some resistant bacteria the resistance is acquired by active-site distortion of PBPs, which lowers their acylation efficiency for beta-lactams. To address this problem we focused our attention to discovery of novel noncovalent inhibitors of PBPs. METHODOLOGY/PRINCIPAL FINDINGS: Our in-house bank of compounds was screened for inhibition of three PBPs from resistant bacteria: PBP2a from Methicillin-resistant Staphylococcus aureus (MRSA), PBP2x from Streptococcus pneumoniae strain 5204, and PBP5fm from Enterococcus faecium strain D63r. Initial hit inhibitor obtained by screening was then used as a starting point for computational similarity searching for structurally related compounds and several new noncovalent inhibitors were discovered. Two compounds had promising inhibitory activities of both PBP2a and PBP2x 5204, and good in-vitro antibacterial activities against a panel of Gram-positive bacterial strains. CONCLUSIONS: We found new noncovalent inhibitors of PBPs which represent important starting points for development of more potent inhibitors of PBPs that can target penicillin-resistant bacteria. [less ▲]

Detailed reference viewed: 43 (17 ULg)
Full Text
Peer Reviewed
See detail1,6-AnhMurNAc derivatives for assay development of amidase AmiD.
Mercier, Frédéric ULg; Zervosen, Astrid ULg; Teller, Nathalie et al

in Bioorganic & Medicinal Chemistry (2010), 18(21), 7422-31

Various peptidoglycan fragments were synthesized from two anhydro-muramic acid derivatives protected with a Bn or a PMB group at the 4th position, in homogenate phase or on a solid support. In order to ... [more ▼]

Various peptidoglycan fragments were synthesized from two anhydro-muramic acid derivatives protected with a Bn or a PMB group at the 4th position, in homogenate phase or on a solid support. In order to facilitate HPLC detection, a chromophoric group was attached to the peptide chain. The periplasmic amidase sAmiD of Escherichia coli was used to cleave the amide bond between the lactyl group of the MurNAc and the alpha-amino group of L-Ala where the peptide chain was at least a dipeptide (L-Ala-gamma-D-Glu) amidated by benzylamine on the gamma-carboxyl group of D-Glu. In the presence of a tripeptide chain (L-Ala-gamma-D-Glu-L-Lys) or a tetrapeptide chain (L-Ala-gamma-D-Glu-m-A(2)pm-D-Ala) higher hydrolysis rates were observed. We have also demonstrated that the presence of TNB on the epsilon-amino group of L-Lys only has a small influence on the hydrolysis capacity of sAmiD. [less ▲]

Detailed reference viewed: 192 (47 ULg)
Full Text
Peer Reviewed
See detailSpecific Structural Features of the N-Acetylmuramoyl-l-Alanine Amidase AmiD from Escherichia coli and Mechanistic Implications for Enzymes of This Family.
Kerff, Frédéric ULg; Petrella, Stéphanie; Mercier, Frédéric ULg et al

in Journal of Molecular Biology (2010), 397

AmiD is the fifth identified N-acetylmuramoyl-l-alanine zinc amidase of Escherichia coli. This periplasmic lipoprotein is anchored in the outer membrane and has a broad specificity. AmiD is capable of ... [more ▼]

AmiD is the fifth identified N-acetylmuramoyl-l-alanine zinc amidase of Escherichia coli. This periplasmic lipoprotein is anchored in the outer membrane and has a broad specificity. AmiD is capable of cleaving the intact peptidoglycan (PG) as well as soluble fragments containing N-acetylmuramic acid regardless of the presence of an anhydro form or not, unlike the four other amidases, AmiA, AmiB, AmiC, and AmpD, which have some specificity. AmiD function is, however, not clearly established but it could be part of the enzymatic machinery involved in the PG turnover in E. coli. We solved three structures of the E. coli zinc amidase AmiD devoid of its lipidic anchorage: the holoenzyme, the apoenzyme in complex with the substrate anhydro-N-acetylmuramic-acid-l-Ala-gamma-d-Glu-l-Lys, and the holoenzyme in complex with the l-Ala-gamma-d-Glu-l-Lys peptide, the product of the hydrolysis of this substrate by AmiD. The AmiD structure shows a relatively flexible N-terminal extension that allows an easy reach of the PG by the enzyme inserted into the outer membrane. The C-terminal domain provides a potential extended geometrical complementarity to the substrate. AmiD shares a common fold with AmpD, the bacteriophage T7 lysozyme, and the PG recognition proteins, which are receptor proteins involved in the innate immune responses of a wide range of organisms. Analysis of the different structures reveals the similarity between the catalytic mechanism of zinc amidases of the AmiD family and the thermolysin-related zinc peptidases. [less ▲]

Detailed reference viewed: 79 (17 ULg)
See detailIdentification and characterization of novel peptidoglycan glycosyltransferase inhibitors with antibacterial activity
Derouaux, Adeline ULg; Turk, Samo; Offant, Julien et al

Poster (2009, November)

Detailed reference viewed: 25 (3 ULg)
Full Text
Peer Reviewed
See detailSynthesis and Evaluation of 3-(Dihydroxyboryl)benzoic Acids as d,d-Carboxypeptidase R39 Inhibitors.
Inglis, Steven R.; Zervosen, Astrid ULg; Woon, Esther C.Y. et al

in Journal of Medicinal Chemistry (2009)

Penicillin binding proteins (PBPs) catalyze steps in the biosynthesis of bacterial cell walls and are the targets for the beta-lactam antibiotics. Non-beta-lactam based antibiotics that target PBPs are of ... [more ▼]

Penicillin binding proteins (PBPs) catalyze steps in the biosynthesis of bacterial cell walls and are the targets for the beta-lactam antibiotics. Non-beta-lactam based antibiotics that target PBPs are of interest because bacteria have evolved resistance to the beta-lactam antibiotics. Boronic acids have been developed as inhibitors of the mechanistically related serine beta-lactamases and serine proteases; however, they have not been explored extensively as PBP inhibitors. Here we report aromatic boronic acid inhibitors of the d,d-carboxypeptidase R39 from Actinomadura sp. strain. Analogues of an initially identified inhibitor [3-(dihydroxyboryl)benzoic acid 1, IC(50) 400 muM] were prepared via routes involving pinacol boronate esters, which were deprotected via a two-stage procedure involving intermediate trifluorborate salts that were hydrolyzed to provide the free boronic acids. 3-(Dihydroxyboryl)benzoic acid analogues containing an amide substituent in the meta, but not ortho position were up to 17-fold more potent inhibitors of the R39 PBP and displayed some activity against other PBPs. These compounds may be useful for the development of even more potent boronic acid based PBP inhibitors with a broad spectrum of antibacterial activity. [less ▲]

Detailed reference viewed: 67 (23 ULg)
Full Text
Peer Reviewed
See detailAminophosphonic Acids and Aminobis(phosphonic acids) as Potential Inhibitors of Penicillin-Binding Proteins
Beck, Josephine; Gharbi, Sonia; Herteg-Fernea, Adriana et al

in European Journal of Organic Chemistry (2009), (1), 85-97

Abstract Aminophosphonic acids and aminobis(phosphonic acids) have been prepared by the alkylation of Schiff bases with methyl bromoacetate or ethyl acrylate. Other pathways, like the modified Pudovik ... [more ▼]

Abstract Aminophosphonic acids and aminobis(phosphonic acids) have been prepared by the alkylation of Schiff bases with methyl bromoacetate or ethyl acrylate. Other pathways, like the modified Pudovik reaction and Kabachnik-Fields reaction, have been considered for the synthesis of the -phosphonic bioisoster of aminocitrate. Partial or complete deprotection of the phosphonate ester have been realised by either acidic hydrolysis or by treatment with trimethylsilyl bromide. Evaluation against penicillin-binding proteins has shown that our compounds are modest inhibitors of class A -lactamases, but have an interesting activity against R39 (D,D-peptidase/carboxypeptidase). [less ▲]

Detailed reference viewed: 76 (26 ULg)
Full Text
Peer Reviewed
See detailStructural basis of the inhibition of class A beta-lactamases and penicillin-binding proteins by 6-beta-iodopenicillanate
Sauvage, Eric ULg; Zervosen, Astrid ULg; Dive, Georges ULg et al

in Journal of the American Chemical Society (2009), 131(42), 15262-15269

6-Beta-halogenopenicillanates are powerful, irreversible inhibitors of various beta-lactamases and penicillin-binding proteins. Upon acylation of these enzymes, the inhibitors are thought to undergo a ... [more ▼]

6-Beta-halogenopenicillanates are powerful, irreversible inhibitors of various beta-lactamases and penicillin-binding proteins. Upon acylation of these enzymes, the inhibitors are thought to undergo a structural rearrangement associated with the departure of the iodide and formation of a dihydrothiazine ring, but, to date, no structural evidence has proven this. 6-Beta-iodopenicillanic acid (BIP) is shown here to be an active antibiotic against various bacterial strains and an effective inhibitor of the class A beta-lactamase of Bacillus subtilis BS3 (BS3) and the D,D-peptidase of Actinomadura R39 (R39). Crystals of BS3 and of R39 were soaked with a solution of BIP and their structures solved at 1.65 and 2.2 A, respectively. The beta-lactam and the thiazolidine rings of BIP are indeed found to be fused into a dihydrothiazine ring that can adopt two stable conformations at these active sites. The rearranged BIP is observed in one conformation in the BS3 active site and in two monomers of the asymmetric unit of R39, and is observed in the other conformation in the other two monomers of the asymmetric unit of R39. The BS3 structure reveals a new mode of carboxylate interaction with a class A beta-lactamase active site that should be of interest in future inhibitor design. [less ▲]

Detailed reference viewed: 79 (30 ULg)
Full Text
Peer Reviewed
See detailDiscovery of New Inhibitors of Resistant Streptococcus pneumoniae Penicillin Binding Protein (PBP) 2x by Structure-Based Virtual Screening.
Miguet, Laurence; Zervosen, Astrid ULg; Gerards, Thomas ULg et al

in Journal of Medicinal Chemistry (2009)

Penicillin binding proteins (PBPs) are involved in the biosynthesis of the peptidoglycan layer constitutive of the bacterial envelope. They have been targeted for more than half a century by extensively ... [more ▼]

Penicillin binding proteins (PBPs) are involved in the biosynthesis of the peptidoglycan layer constitutive of the bacterial envelope. They have been targeted for more than half a century by extensively derived molecular scaffolds of penicillins and cephalosporins. Streptococcus pneumoniae resists the antibiotic pressure by inducing highly mutated PBPs that can no longer bind the beta-lactam containing agents. To find inhibitors of PBP2x from Streptococcus pneumoniae (spPBP2x) with novel chemical scaffold so as to circumvent the resistance problems, a hierarchical virtual screening procedure was performed on the NCI database containing approximately 260000 compounds. The calculations involved ligand-based pharmacophore mapping studies and molecular docking simulations in a homology model of spPBP2x from the highly resistant strain 5204. A total of 160 hits were found, and 55 were available for experimental tests. Three compounds harboring two novel chemical scaffolds were identified as inhibitors of the resistant strain 5204-spPBP2x at the micromolar range. [less ▲]

Detailed reference viewed: 73 (15 ULg)
Full Text
Peer Reviewed
See detailCharacterization of the proteins encoded by the Bacillus subtilis yoxA-dacC operon.
Duez, Colette ULg; Zervosen, Astrid ULg; Teller, Nathalie et al

in FEMS Microbiology Letters (2009), 300

Abstract In Bacillus subtilis, the yoxA and dacC genes were proposed to form an operon. The yoxA gene was overexpressed in Escherichia coli and its product fused to a polyhistidine tag was purified. An ... [more ▼]

Abstract In Bacillus subtilis, the yoxA and dacC genes were proposed to form an operon. The yoxA gene was overexpressed in Escherichia coli and its product fused to a polyhistidine tag was purified. An aldose-1-epimerase or mutarotase activity was measured with the YoxA protein that we propose to rename as GalM by analogy with its counterpart in E. coli. The peptide d-Glu-delta-m-A(2)pm-d-Ala-m-A(2)pm-d-Ala mimicking the B. subtilis and E. coli interpeptide bridge was synthesized and incubated with the purified dacC product, the PBP4a. A clear dd-endopeptidase activity was obtained with this penicillin-binding protein, or PBP. The possible role of this class of PBP, present in almost all bacteria, is discussed. [less ▲]

Detailed reference viewed: 71 (24 ULg)
Full Text
Peer Reviewed
See detailCharacterization of the cattle serum antibody responses against TEM beta-lactamase and the nonimmunogenic Escherichia coli heat-stable enterotoxin (STaI)
Zervosen, Astrid ULg; Saegerman, Claude ULg; Antoniotti, Ingrid et al

in FEMS Immunology & Medical Microbiology (2008), 54(3), 319-329

In order to test the use of a subunit recombinant vaccine for its capacity to induce antibodies against the nonimmunogenic heat-stable enterotoxin STa from Escherichia coli and the TEM-1 beta-lactamase ... [more ▼]

In order to test the use of a subunit recombinant vaccine for its capacity to induce antibodies against the nonimmunogenic heat-stable enterotoxin STa from Escherichia coli and the TEM-1 beta-lactamase, cattle were immunized with a hybrid protein created by insertion of the STa sequence at position 197 of the TEM-1 beta-lactamase. Specific anti-STa IgG and IgG1 antibodies were detected at low levels, while no IgG2 antibodies were detected. In contrast, high levels of the different anti-TEM IgG subtypes were detected in cattle sera. In addition, beta-lactamase activity was inhibited by the sera. The presence of antibodies against STa and TEM-1 beta-lactamase was assessed in sera from 366 cattle taken from the field. No significant level of IgGs against the toxin or the TEM-1 was detected. A comparison of the antibody level between the immunized and the nonimmunized animals clearly demonstrated that STa was not able to induce a significant level of antibodies in the vaccinated animals. In contrast, a strong antibody response against TEM-1 beta-lactamase was demonstrated. [less ▲]

Detailed reference viewed: 44 (7 ULg)
Full Text
Peer Reviewed
See detailStructural and mechanistic basis of penicillin-binding protein inhibition by lactivicins
Macheboeuf, Pauline; Fischer, Delphine S; Brown, Tom Jr et al

in Nature Chemical Biology (2007), 3(9), 565-569

beta-lactam antibiotics, including penicillins and cephalosporins, inhibit penicillin-binding proteins (PBPs), which are essential for bacterial cell wall biogenesis. Pathogenic bacteria have evolved ... [more ▼]

beta-lactam antibiotics, including penicillins and cephalosporins, inhibit penicillin-binding proteins (PBPs), which are essential for bacterial cell wall biogenesis. Pathogenic bacteria have evolved efficient antibiotic resistance mechanisms that, in Gram-positive bacteria, include mutations to PBPs that enable them to avoid beta-lactam inhibition(1). Lactivicin (LTV; 1) contains separate cycloserine and c-lactone rings and is the only known natural PBP inhibitor that does not contain a beta-lactam(2-4). Here we show that LTV and a more potent analog, phenoxyacetyl-LTV (PLTV; 2), are active against clinically isolated, penicillin-resistant Streptococcus pneumoniae strains. Crystallographic analyses of S. pneumoniae PBP1b reveal that LTV and PLTV inhibition involves opening of both monocyclic cycloserine and gamma-lactone rings. In PBP1b complexes, the ring-derived atoms from LTV and PLTV show a notable structural convergence with those derived from a complexed cephalosporin (cefotaxime; 3). The structures imply that derivatives of LTV will be useful in the search for new antibiotics with activity against beta-lactam-resistant bacteria. [less ▲]

Detailed reference viewed: 49 (8 ULg)
See detailSynthesis of anhydro-muramic acid derivatives as substrates for MurNAc amidase
Mercier, Frédéric; Zervosen, Astrid ULg; Lemaire, Christian ULg et al

Poster (2007, March 22)

Detailed reference viewed: 8 (0 ULg)
See detailSynthesis of anhydro-muramic acid derivatives as substrates for MurNAc amidase
Mercier, Frédéric; Lemaire, Christian ULg; Plenevaux, Alain ULg et al

Poster (2006, May 17)

Detailed reference viewed: 9 (0 ULg)
Full Text
Peer Reviewed
See detailGlycosyl transferase activity of the Escherichia coli penicillin-binding protein 1b: Specificity profile for the substrate
Fraipont, Claudine ULg; Sapunaric, Frédéric ULg; Zervosen, Astrid ULg et al

in Biochemistry (2006), 45(12), 4007-4013

The glycosyl transferase of the Escherichia coli bifunctional penicillin-binding protein (PBP) 1b catalyzes the assembly of lipid-transported N-acetylglucosaminyl-beta-1,4-N-acetylmuramoyl-L-Ala-gamma-D ... [more ▼]

The glycosyl transferase of the Escherichia coli bifunctional penicillin-binding protein (PBP) 1b catalyzes the assembly of lipid-transported N-acetylglucosaminyl-beta-1,4-N-acetylmuramoyl-L-Ala-gamma-D-Glu-meso-A(2)pm-D-Ala-D-Ala units (lipid II) into linear peptidoglycan chains. These units are linked, at C1 of N-acetylmuramic acid (MurNAc), to a C-55 undecaprenyl pyrophosphate. In an in vitro assay, lipid II functions both as a glycosyl donor and as a glycosyl acceptor substrate. Using substrate analogues, it is suggested that the specificity of the enzyme for the glycosyl donor substrate differs from that for the acceptor. The donor substrate requires the presence of both N-acetylglucosamine (GlcNAc) and MurNAc and a reactive group on C1 of the MurNAc and does not absolutely require the lipid chain which can be replaced by uridine. The enzyme appears to prefer an acceptor substrate containing a polyprenyl pyrophosphate on C1 of the MurNAc sugar. The problem of glycan chain elongation that presumably proceeds by the repetitive addition of disaccharide peptide units at their reducing end is discussed. [less ▲]

Detailed reference viewed: 31 (9 ULg)
Peer Reviewed
See detailSynthesis of protected meso-diaminopimelic acid.
Teller, N.; Lemaire, Christian ULg; Plenevaux, Alain ULg et al

Poster (2005, October 10)

Detailed reference viewed: 12 (2 ULg)
Peer Reviewed
See detailSynthesis of anhydro-muranic acid derivatives as substrates for MurNAc amidase.
Mercier, F.; Lemaire, Christian ULg; Plenevaux, Alain ULg et al

Poster (2005, October 10)

Detailed reference viewed: 18 (7 ULg)
Full Text
Peer Reviewed
See detailInteractions between penicillin-binding proteins (PBPs) and two novel classes of PBP inhibitors, arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones
Zervosen, Astrid ULg; Lu, Wei-Ping; Chen, Zhouliang et al

in Antimicrobial Agents and Chemotherapy (2004), 48(3), 961-969

Several non-beta-lactam compounds were active against various gram-positive and gram-negative bacterial strains. The MICs of arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones were lower ... [more ▼]

Several non-beta-lactam compounds were active against various gram-positive and gram-negative bacterial strains. The MICs of arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones were lower than those of ampicillin and cefotaxime for methicillin-resistant Staphylococcus aureus M1339 and vancomycin-resistant Enterococcus faecium EF12. Several compounds were found to inhibit the cell wall synthesis of S. aureus and the last two steps of peptidoglycan biosynthesis catalyzed by ether-treated cells of Escherichia coli or cell wall membrane preparations of Bacillus megaterium. The effects of the arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-one derivatives on E. coli PBP 3 and PBP 5, Streptococcus pneumoniae PBP 2xS (PBP 2x from a penicillin-sensitive strain) and PBP 2xR (PBP 2x from a penicillin-resistant strain), low-affinity PBP 2a of S. aureus, and the Actinomadura sp. strain R39 and Streptomyces sp. strain R61 DD-peptidases were studied. Some of the compounds exhibited inhibitory activities in the 10 to 100 muM concentration range. The inhibition of PBP 2xS by several of them appeared to be noncompetitive. The dissociation constant for the best inhibitor (K-i = 10 muM) was not influenced by the presence of the substrate. [less ▲]

Detailed reference viewed: 33 (0 ULg)
See detailNucleotidaktivierte Di- und Oligosaccharide sowie Verfahren zu deren Herstellung
Zervosen, Astrid ULg; Elling, Lothar; Nieder, Veronika et al

Patent (2003)

Detailed reference viewed: 5 (0 ULg)