References of "Thonart, Philippe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailIsolation and identification of a new Bacillus strain for amylase production
Bakri, Y.; Ammouneh, H.; El-Khouri, S. et al

in Research in Biotechnology (2012), 3(6), 51-58

Detailed reference viewed: 9 (4 ULg)
Full Text
See detailScaphandre La science rencontre l'art: L'art
Haubruge, Eric ULg; Bay, Daniel ULg; Semal, Jean et al

in Haubruge, Eric; Bay, Daniel; Semal, Jean (Eds.) Scaphandre La science rencontre l'art (2012)

Detailed reference viewed: 68 (16 ULg)
Peer Reviewed
See detailEffect of humic substances on in vitro rooting and acclimatization of Alder (Alnus glutinosa (L.) Gaertn).
Tahiri, Abdelghani ULg; Destain, Jacqueline ULg; Druart, Philippe et al

Poster (2012)

Humic substances (HS) are organic compounds resulting from the physical, chemical and microbiological transformations of organic residues. Present every where in the nature; they are taking part in basic ... [more ▼]

Humic substances (HS) are organic compounds resulting from the physical, chemical and microbiological transformations of organic residues. Present every where in the nature; they are taking part in basic functionalities in any ecosystems involving soils, sediments, waterand landfills. They are heterogeneous and complex carbon macromolecules. Our study aims to compare the effect of HS on in vitro rooting and acclimatization of the Alder species (Alnus glutinosa (L.) Gaertn) as tree growing on river banks or wasted areas. [less ▲]

Detailed reference viewed: 17 (4 ULg)
Peer Reviewed
See detailPreliminary results on growing tree roots in vitro in presence of humic substances
Tahiri, Abdelghani ULg; Destain, Jacqueline ULg; Druart, Philippe et al

Poster (2012)

Humic substances (HS) are organic compounds resulting from the physical, chemical and microbiological transformations of organic residues. Present everywhere in the nature; they are taking part in basic ... [more ▼]

Humic substances (HS) are organic compounds resulting from the physical, chemical and microbiological transformations of organic residues. Present everywhere in the nature; they are taking part in basic functionalities in any ecosystems involving soils, sediments, water and landfills. They are heterogeneous and complex carbon macromolecules. Our study aims to determine the main biological properties of HS on plant growth in relation to their physicochemical properties. [less ▲]

Detailed reference viewed: 13 (2 ULg)
Full Text
Peer Reviewed
See detailLes entérocoques : avantages et inconvénients en biotechnologie (synthèse bibliographique)
Aguilar Galvez, A.; Dubois Dauphin, Robin ULg; Destain, Jacqueline ULg et al

in Biotechnologie, Agronomie, Société et Environnement = Biotechnology, Agronomy, Society and Environment [=BASE] (2012), 16(1), 67-76

Detailed reference viewed: 28 (7 ULg)
Peer Reviewed
See detailNewly discovered natural functions for cyclic lipopeptides from rhizobacteria
Ongena, Marc ULg; Henry, G.; Deleu, Magali ULg et al

Conference (2012)

Detailed reference viewed: 18 (1 ULg)
Full Text
Peer Reviewed
See detailModulation of the lipopeptide pattern secreted by Bacillus subtilis upon colonization of different plant roots
Ongena, Marc ULg; Cawoy, Hélène ULg; Smargiassi, Maïté et al

in Bulletin OILB/SROP = IOBC/WPRS Bulletin (2012), 78

Detailed reference viewed: 38 (21 ULg)
Full Text
Peer Reviewed
See detailImpact of mixing imperfections on yeast bioreactor performances: Scale-down reactor concept and related experimental tools
Delvigne, Frank ULg; Blaise, Yannick ULg; Destain, Jacqueline ULg et al

in Cerevisia and Biotechnology (2012), 37

A method combining environmental data extracted from the dissolved oxygen profile of a fed-batch bioreactor and a dynamic discrete Markov chain model has been presented in order to give more insight about ... [more ▼]

A method combining environmental data extracted from the dissolved oxygen profile of a fed-batch bioreactor and a dynamic discrete Markov chain model has been presented in order to give more insight about the glucose and dissolved oxygen fluctuations experienced by the microorganisms during cultivation in heterogeneous bioreactor. The fed-batch cultivation of Saccharomyces cerevisiae has been performed in a well-mixed and a partitioned scale-down reactor (SDR). The analysis of the environmental sequences has shown extended time lengths for the glucose availability and depletion sequences in the case of the SDR under a DO-controlled fed-batch culture. The Markov chain model developed in this work is able to capture the stochastic environmental events, i.e. in our case the environmental states experienced by the microorganisms crossing the tubular part of the SDR. The simulation results show clearly an extension of the starvation periods in the case of the culture performed in the SDR. The simulations have been performed at the single cells level allowing future improvements of our model and notably in the context of the population segregation phenomena occurring in fed-batch cultures. As a perspective, flow cytometry has been presented as a high-throughput analytical tool for the investigation of yeast physiology at the single cell level and in process-related conditions. [less ▲]

Detailed reference viewed: 55 (10 ULg)
Full Text
Peer Reviewed
See detailPAMPs, MAMPs, DAMPs and others: An update on the diversity of plant immunity elicitors [PAMPs, MAMPs, DAMPs et autres: Mise à jour de la diversité des éliciteurs de l'immunité des plantes]
Henry, Guillaume; Thonart, Philippe ULg; Ongena, Marc ULg

in Biotechnologie, Agronomie, Société et Environnement = Biotechnology, Agronomy, Society and Environment [=BASE] (2012), 16(2), 257-268

Plants possess a broad array of defenses that could be actively expressed in response of pathogenic organisms or parasites but also following beneficial saprophytic microorganisms recognition ... [more ▼]

Plants possess a broad array of defenses that could be actively expressed in response of pathogenic organisms or parasites but also following beneficial saprophytic microorganisms recognition. Specifically, there are compounds derived from these organisms and called elicitors that are perceived by the plant to induce a locally or systemically expressed resistance. The understanding of the physiological and biological basis of these induced immunity mechanisms have greatly advanced over the past years but a deeper investigation of the mechanisms underlying the perception of elicitors is essential to develop novel strategies for pest control. The application of chemical and biological stimulators of plant immune defenses in conventional agriculture is expected to increase within the next years. Because of their organic origin and as they provide means for conferring plant protection in a non-transgenic manner, elicitors of plant immunity have a huge potential as biocontrol products. Through this review, we want to illustrate the diversity of compounds identified as stimulators of the plant immune system and describe the mechanisms by which they could be recognized at the plasma membrane level. [less ▲]

Detailed reference viewed: 102 (14 ULg)
Full Text
Peer Reviewed
See detailCOMPARISON BETWEEN CONTINUOUS AND BATCH PROCESSING TO PRODUCE XYLANASE BY Penicillium canescens 10-10c
Bakri, Y.; Akeed, Y.; Thonart, Philippe ULg

in Brazilian Journal of Chemical Engineering (2012), 29(3), 441-447

Penicillium canescens 10-10c strain was cultivated on barley straw hydrolysate as a soluble nutrient source and as inducer for xylanase production. Barley straw hydrolysate was obtained by treatment of ... [more ▼]

Penicillium canescens 10-10c strain was cultivated on barley straw hydrolysate as a soluble nutrient source and as inducer for xylanase production. Barley straw hydrolysate was obtained by treatment of barley straw with NaOH or hot water. In shake flask cultures, NaOH treatment was found to increase the biomass production, but was not accompanied by an increase in xylanase production. The best xylanase production (54 U/ml) was observed on hydrolyzed extract from barley straw treated with hot water (100 ºC) for 3 hours. Enzyme production was further improved by scaling up the cultivation process to a 3-L stirred tank bioreactor. For batch cultivations in the bioreactor, the maximum xylanase productivity reached 1.31 and 0.46 U/ml/h, respectively, after 96 and 168 hours of cultivation. However, xylanase productivity reached 3.46 U/ml/h in the continuous culture. These results suggest that xylanase can be produced efficiently by Penicillium canescens 10-10c in continuous culture from an inexpensive source such as barley straw hydrolysate. [less ▲]

Detailed reference viewed: 25 (1 ULg)
Full Text
Peer Reviewed
See detailLa production de biohydrogène à partir de substrats carbohydratés : état de l'art
Hiligsmann, Serge ULg; Beckers, Laurent ULg; Masset, Julien ULg et al

in Récents progrès en génie des procédés (2011, December 01)

Hydrogen is being considered as an ideal and clean energy carrier. The recent advances to produce biohydrogen from renewable sources such as biomass and particularly by fermentation of carbohydrate-rich ... [more ▼]

Hydrogen is being considered as an ideal and clean energy carrier. The recent advances to produce biohydrogen from renewable sources such as biomass and particularly by fermentation of carbohydrate-rich substrates from agriculture and agro-industries appear promising. Such a process enables both organic waste treatment and renewable energy production to be coupled. The paper presents the state of the art about the different hydrogen-producing microorganisms and the parameters that have been investigated in order to improve the hydrogen production yields and rates. [less ▲]

Detailed reference viewed: 72 (17 ULg)
Full Text
Peer Reviewed
See detailEffets de la pression partielle en hydrogène sur la production anaérobie de bioH2 par une bactérie chimiotrophe du genre Clostridium dans un nouveau réacteur à cylindre horizontal rotatif.
Beckers, Laurent ULg; Hiligsmann, Serge ULg; Hamilton, Christopher ULg et al

in Récents Progrès en Génie des Procédés (2011, December), 101

Hydrogen is widely considered as the most promising energetic carrier. At an industrial scale, steam reforming of methane is currently the major hydrogen producing process. But it may also be produced ... [more ▼]

Hydrogen is widely considered as the most promising energetic carrier. At an industrial scale, steam reforming of methane is currently the major hydrogen producing process. But it may also be produced from renewable biomass. Indeed, the fermentative production of hydrogen from renewable biomass using anaerobic bacteria could at least partially reduce our dependence on fossil fuel, decrease the carbon dioxide emissions and produce “green” energy. It offers the potential production of usable hydrogen from a variety of renewable resources such as carbohydrates wastes from agriculture or agro-food industries. This technology is based on anaerobic fermentation, called dark fermentation, by chemotrophic bacteria. The investigations carried out at CWBI involve selection and characterization of bacteria strains able to produce biohydrogen efficiently and with a wide range of substrate. The selected strains at the laboratory has been characterised as Clostridium sp. In order to produce hydrogen at high yields and production rates, the biotechnological process needs to be further optimized and efficient bioreactors must be designed. At CWBI, a new reactor called “horizontal rotating cylinder bioreactor” allows the production of biohydrogen from glucose with our Clostridium sp. strain with a high yield and production rate. This reactor, working continuously, has an internal volume of 2.3l but a working volume (liquid phase) of 300ml. Firstly, it enhances the hydrogen production rate by partially fixing the bacteria on the porous cylinder and thus increasing the cell concentration in the bioreactor. Secondly, the rotative cylinder enables efficient gas transfer (mainly hydrogen) from the liquid phase where it is produced by the bacteria. This is an important way to enhance hydrogen production yield by allowing the bacteria metabolism to shift in a fermentation type that produces more hydrogen. This was confirmed by increasing or decreasing the total pressure in the bioreactor and observing the influence of hydrogen production. The liquid to gas hydrogen transfer is possibly an important factor to enhance the biogas production. Our investigation confirmed this by testing different liquid to gas transfer condition in BHP test (batch fermentation in 250ml serum bottles).This was made either by decreasing total and partial pressure or by increasing the mixing state of the media. Our work concludes the importance of providing good liquid to gas transfers in the biohydrogen producing reactors to enhance the hydrogen production and reach higher yields and production rates. [less ▲]

Detailed reference viewed: 58 (12 ULg)
Full Text
Peer Reviewed
See detailEffects of hydrogen partial pressure on fermentative biohydrogen production by a chemotropic Clostridium bacterium in a new horizontal rotating cylinder reactor
Beckers, Laurent ULg; Hiligsmann, Serge ULg; Hamilton, Christopher ULg et al

Poster (2011, December)

The fermentative production of hydrogen using chemotrophic anaerobic bacteria offers a new way to produce “green” energy from a large variety of renewable resources and organic wastes. In order to produce ... [more ▼]

The fermentative production of hydrogen using chemotrophic anaerobic bacteria offers a new way to produce “green” energy from a large variety of renewable resources and organic wastes. In order to produce hydrogen at high yields and production rates, efficient bioreactors must be designed. A new reactor called “horizontal rotating cylinder bioreactor” allows the production of biohydrogen from glucose with the selected Clostridium sp. strain at high yields (1,9molH2·molglucose-1) and production rates (48,6mmolH2·lmilieu-1.molhexose-1·h-1). The rotative cylinder where the bacteria are fixed enables efficient gas transfer (mainly hydrogen) from the liquid phase where it is produced by the bacteria. This is an important way to allow the bacteria metabolism to shift in a fermentation pathway that produces more hydrogen. This was confirmed by varying the total pressure in the bioreactor. An increase of the total pressure 0,18bar lowered the yields of 19,5% while a decrease of 0,11bar increased the yields of 7%. Our work concludes the importance of providing good liquid to gas transfers in the biohydrogen-producing reactors in order to reach higher yields and production rates. [less ▲]

Detailed reference viewed: 30 (5 ULg)
Peer Reviewed
See detailModèle hybride Euler-Lagrange pour la description des hétérogénéités dans les bioréacteurs.
Delafosse, Angélique ULg; Delvigne, Frank ULg; Collignon, Marie-Laure ULg et al

in SFGP (Ed.) Récents Progrès en Génie des Procédés - N° 101 - Des procédés au service du produit au coeur de l'Europe - Actes du XIIIème Congrès de la société Française de Génie des Procédés - Du 29 Nov. au 1er Décembre 2011 - Lille Grand Palais, FRANCE (2011, November 29)

Detailed reference viewed: 40 (20 ULg)
Peer Reviewed
See detailSynthesis by the sol-gel process of visible light sensitive-TiO2 for the degradation of pollutants and microorganisms
Tasseroul, Ludivine ULg; Lambert, Stéphanie ULg; Páez Martínez, Carlos ULg et al

in Récents Progrès en Génie des Procédés, Lavoisier Technique et Documentation, Volume 101, 6 p. (CD-ROM) (2011, November 29)

To stabilize the TiO2-dye interaction, free metal tetra(4-carboxyphenyl)porphyrin and nickel tetra(4-carboxyphenyl)porphyrin were introduced into the TiO2 matrix by cogelation rather than by grafting. DR ... [more ▼]

To stabilize the TiO2-dye interaction, free metal tetra(4-carboxyphenyl)porphyrin and nickel tetra(4-carboxyphenyl)porphyrin were introduced into the TiO2 matrix by cogelation rather than by grafting. DR and FT-IR spectroscopies were performed to establish the interaction between porphyrins and TiO2. Cristallinity and specific surface area were performed by XRD and nitrogen adsorption-desorption measurements. The photoactivity of doped-TiO2 xerogels was evaluated for p-nitrophenol and Escherichia coli degradation. Under visible light, the samples allowed the degradation of 40% of p-nitrophenol in 6 h and the elimination of 108 CFU/mL of E. coli in 48 h. [less ▲]

Detailed reference viewed: 51 (15 ULg)
Peer Reviewed
See detailStratégies de production de 6-amyl-α-pyrone produit par Trichoderma spp. par culture en milieu semi-solide aspergé
Musoni, Michel ULg; Delvigne, Frank ULg; Destain, Jacqueline ULg et al

Conference (2011, November 29)

La biosynthèse de la 6-amyl-α-pyrone (arôme de noix de coco) à partir de l'espèce de Trichoderma a été étudiée dans différents bioréacteurs. L’étude compare la production du volatile dans un réacteur ... [more ▼]

La biosynthèse de la 6-amyl-α-pyrone (arôme de noix de coco) à partir de l'espèce de Trichoderma a été étudiée dans différents bioréacteurs. L’étude compare la production du volatile dans un réacteur classique submergé et un réacteur adapté avec plateau aspergé. La source de carbone était le glucose et l’huile de ricin, ce dernier et reconnu être le précurseur de la formation des lactones dans la biotransformation. Les milieux seront submergé et semi-solide, le volume de travail de 6, 12 et 16 litres. Il ressort des résultats obtenus au cours de l’étude que le composé aromatique est produit par la souche utilisé à partir du deuxième (133.8 mg/l) jour dans l’espace de tête et dans le milieu quand la culture est réalisé avec du glucose jusqu’au quatrième jour, alors qu’avec l’huile de ricin il est retrouvé dans le milieu uniquement (342,23 mg/l). La biomasse produite dans le réacteur de 6 l avec l’huile de ricin est de 279,6 g/l alors que pour le glucose est de 139,75, dans celui de 12 l il de 61,71 g/l avec l’huile de ricin et de 6,37 g/l avec le glucose, et celui de 16 l, 115,66 g/l et le glucose 7,4 g/l, ainsi, plus le volume est petit plus la production est meilleure. Il en va de même pour la concentration du volatile qui était de 2,42 g/l avec l’huile de ricin sur plateau et de 0,28 g/l avec le glucose. Dès lors, Il convient de noter que le système de production du volatile par le réacteur adapté avec plateau aspergé permet l’augmentation de la production de celui-ci, il présente la facilité d’aménagement, avec les contours possible, il offre la possibilité d’être extrapolable. En se référant à la possibilité de renouveler le milieu de culture en faisant circuler le milieu frais, compte tenue du fait que la biomasse est déposée sur les plateaux et qu’à la fin de culture la solution est translucide, retirable après un certain temps, il y découlerait l’amélioration de la productivité. [less ▲]

Detailed reference viewed: 55 (25 ULg)