References of "Thonart, Philippe"
     in
Bookmark and Share    
Peer Reviewed
See detailPhysiological and bio-functional properties of gum arabic: a notable interest for certain human diseases
Eloundou Mballa, Pierre; Goffin, Dorothée ULg; Destain, Jacqueline ULg et al

in Biotechnologie, Agronomie, Société et Environnement = Biotechnology, Agronomy, Society and Environment [=BASE] (in press)

Detailed reference viewed: 111 (70 ULg)
Full Text
Peer Reviewed
See detailBiorefine: Recovery of nutrients and metallic trace elements from different wastes by chemical and biochemical processes
Tarayre, Cédric ULg; Fischer, Christophe ULg; De Clercq, Lies et al

Conference (2014, June 05)

At present, most waste processing operations are not oriented towards the valorization of valuable reusable components such as nitrogen, phosphorus, potassium and even Metallic Trace Elements (MTEs ... [more ▼]

At present, most waste processing operations are not oriented towards the valorization of valuable reusable components such as nitrogen, phosphorus, potassium and even Metallic Trace Elements (MTEs). Currently, sewage sludge, for example is usually used as a fertilizer in agriculture, in energy production or in the field of construction. Ashes originating from sludge incineration contain heavy metals and minerals in large quantities. Manure is mainly used in agriculture, although considerable amounts of nutrients are lost and cause pollution. Digestate is also used in agriculture, but other alternatives have been proposed, such as the energetic valorization. Better valorization of these wastes in agriculture (or other sectors) is however largely constrained by a multitude of legal requirements. An important problematic point is the concentration in MTEs that is found in those wastes. Consequently, recovery of nutrients and MTEsmay be a key solution for optimal valorization of wastes. Many unit operations used in the field of chemical and biochemical engineering (mechanical operations on fluids, solids, mass and heat transfers, chemical reactions, etc.) could be used in order to achieve an efficient recovery yield of nutrients and trace elements. The aim of the BioRefine Project is to make an inventory of all recovery techniques of nutrients and MTEs in five countries: Belgium, France, Germany, United Kingdom and The Netherlands. Pilot plants will also be tested to assess the efficiency of new treatment techniques after which the most efficient processes will be chosen to be applied on a larger scale. In addition, the collected data will be used to propose exploitation scenarios taking into account legal constraints and optimized logistics.This work is supported through an INTERREG IVB NWE programme(ref. 320J-BIOREFINE). [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailMALDI Mass Spectrometry Imaging: a new tool to decipher the antibiome of Bacillus amyloliquefaciens
Debois, Delphine ULg; Jourdan, Emmanuel; Cawoy, Hélène et al

Conference (2014, June 05)

Soil Bacillus isolates may devote up to 8% of their genome to nonribosomal synthesis of lipopeptide (LP)- and polyketide (PK)-type antibiotics. LPs from surfactin, iturin and fengycin families are known ... [more ▼]

Soil Bacillus isolates may devote up to 8% of their genome to nonribosomal synthesis of lipopeptide (LP)- and polyketide (PK)-type antibiotics. LPs from surfactin, iturin and fengycin families are known to exert different actions on the wellness of the producing strain such as fungitoxicity (iturin, fengycin) or motility, root colonization and immune stimulating agent (surfactin). Nevertheless, few is reported about the actual antibiome secreted in situ by Bacillus cells during confrontation with phytopathogens or plant root colonization. We developed a method mimicking the conditions prevailing in the rhizosphere and, taking advantage of the versatility of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging, we were able to localize and identify antibiotics produced in situ by bacterial cells. First, we applied this new methodology to bioassays in which Bacillus amyloliquefaciens 98S were grown together with Fusarium oxysporum, with the aim of deciphering the role of the different LP families during the phytopathogen growth inhibition. Our results showed that the three LP families were readily produced in different proportions. Especially, images of surfactins, iturins and fengycins demonstrated that iturins are the antibiotic family actually involved in the antagonism against Fusarium oxysporum. In a second approach, we used a “in planta” model in which Bacillus amyloliquefaciens S499 was simultaneously grown with Tomato and Arabidopsis thaliana roots. Imaging results, obtained during a time course analysis, showed that surfactin is always the major lipopeptide detected. In further experiments involving a refined time-window, we observed that surfactin is actually produced as soon as 24h post inoculation. These results were the starting point of a wider study showing that the early accumulation of surfactin is a complex phenomenon involving, among other mechanisms, cell-well components recognition by bacteria, and that this interaction is a win-win association for both plant and bacterial cells. [less ▲]

Detailed reference viewed: 39 (3 ULg)
Full Text
Peer Reviewed
See detailResearch of phosphate accumulating microorganisms from WWTPs for the recovery of phosphorus from organic wastes (3BV.3.47)
Tarayre, Cédric ULg; Michels, Evi; Buysse, Jeroen et al

Poster (2014, June)

Many wastes containing reusable components, such as nitrogen, phosphorus and potassium, are not exploited through ideal processes. As an example, in Wallonia (Belgium), the main treatment applied to ... [more ▼]

Many wastes containing reusable components, such as nitrogen, phosphorus and potassium, are not exploited through ideal processes. As an example, in Wallonia (Belgium), the main treatment applied to sewage sludge consists in incinerating the material. Such a process is chosen when the heavy metals are too concentrated in the sludge, preventing an agricultural use. However, sewage sludge, as well as manure, slurry and digestate, contain notable amounts of nutrients (nitrogen, phosphorus and potassium). Some Waste Water Treatment Plants (WWTPs) are actually designed in order to promote Phosphate Accumulating Organisms (PAOs), able to store or release phosphorus in accordance with the environmental conditions. The aim of this work is to isolate PAOs from WWTPs and evaluate their applicability to phosphorus recovery from organic wastes. Metagenomics and metabolic properties are also considered. This work is supported by the BioRefine Project, a European project in which various member states focus on recovery of inorganics from organic wastestreams. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Peer Reviewed
See detailTest of humic substances on in vitro roots initiation using isolated leaves of woody species
Tahiri, Abdelghani ULg; Destain, Jacqueline ULg; Thonart, Philippe ULg et al

Poster (2014, May 15)

Arise from the chemical and biological degradation of plant and animal residues and from the synthetic activities of microorganisms in the soil, humic substances (HS) are natural heterogeneous aromatic ... [more ▼]

Arise from the chemical and biological degradation of plant and animal residues and from the synthetic activities of microorganisms in the soil, humic substances (HS) are natural heterogeneous aromatic and organic compounds. These substances are chemically complex with no clearly defined chemical structure, although generalized models have been proposed and they can be divided into fractions of humic acids, fulvic acids and humins depending on their solubility in water as a function of the pH. The stimulation of plant growth and development by HS are the activities that have attracted the attention of many scientists. They influence plant productivity directly by the stimulation of biochemical and metabolic processes or indirectly through the modification of soil characteristics and microflora activities. All together, these properties mainly affect root architecture. By inducing root hairs proliferation, differentiating root cells and enhancing lateral root emergence, an increase of the total root biomass is observed. Experiments targeting the rooting stages in absence of interferences were conducted in vitro using HS extracted from landfill leachate and a stable commercial formulation (“Humifirst” from TRADECORP company: 12% humic acid and fulvic acid 3%) issued from leonardite. Shoots and leaves explants of silver birch (Betula pendula Roth) and black alder (Alnus glutinosa L. Gaertn) vitro-plants were treated with 10 ppm leachate HS and 100 ppm Humifirst HS for 5 days during the rooting induction/initiation phase. The treated explants were then transferred into elongation medium containing only nitrate calcium for 4 weeks. The results show that application of HS during the root induction/initiation phase did not significantly influence root growth of both species in comparison with control explants. [less ▲]

Detailed reference viewed: 14 (2 ULg)
Full Text
Peer Reviewed
See detailEnzymatic process for the fractionation of baker’s yeast cell wall (Saccharomyces cerevisiae)
Borchani, Chema; Fonteyn, Fabienne; Jamin, Guilhem et al

in Food Chemistry (2014), 163

Detailed reference viewed: 10 (0 ULg)
Full Text
See detailEffect of metal nanoparticles encapsulated in porous silica on the biphenyl biodegradation by Rhodococcus erythropolis T902.1
Wannoussa, Wissal ULg; Hiligsmann, Serge ULg; Heinrichs, Benoît ULg et al

Poster (2014, May 01)

Biphenyl is stable and highly hydrophobic, thus having a low availability for degrading microorganisms, which need an aqueous environment for their growth. As a consequence, bioremediation processes are ... [more ▼]

Biphenyl is stable and highly hydrophobic, thus having a low availability for degrading microorganisms, which need an aqueous environment for their growth. As a consequence, bioremediation processes are very limited. However, a few studies showed that using a low metal concentration accelerates the biodegradation of pollutants (Yeom and Yoo1997). Nanoparticles are considered as a new generation of compounds to improve environmental remediation and biological processes (Beckers et al. 2013; Zhang 2003). This paper investigated the enhancement effect of nanometre-sized metallic Cu, Ag, Pd or Co, on the biphenyl biodegradation by Rhodococcus erythropolis T902.1. Have been synthesized by a sol–gel process (Lambert et al. 2004). These nanoparticles (NP) of about 2–3 nm were encapsulated in porous silica (SiO2) and were added at low concentration (10-4M) in the M284 minimal medium with 500 ppm biphenyl as source of carbon and energy. The cultures containing Pd or Co produced 30% more biphenyl degraded with a higher Rhodococcus growth than those without NP (positive control) or with silica particles only. On the contrary, the presence of 10-4 M Cu or Ag nanoparticles showed an inhibitory effect on bacterial growth and biphenyl degradation compared to the positive. [less ▲]

Detailed reference viewed: 23 (10 ULg)
Full Text
Peer Reviewed
See detailSpatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging
Debois, Delphine ULg; Jourdan, Emmanuel; Smargiasso, Nicolas ULg et al

in Analytical Chemistry (2014), 86(9), 4431-4438

Some soil Bacilli living in association with plant roots can protect their host from infection by pathogenic microbes and are therefore being developed as biological agents to control plant diseases. The ... [more ▼]

Some soil Bacilli living in association with plant roots can protect their host from infection by pathogenic microbes and are therefore being developed as biological agents to control plant diseases. The plant protective activity of these bacteria has been correlated with the potential to secrete a wide array of antibiotic compounds upon growth as planktonic cells in isolated cultures under laboratory conditions. However, in situ expression of these antibiotics in the rhizosphere where bacterial cells naturally colonize root tissues is still poorly understood. In this work, we used Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI) to examine spatio-temporal changes in the secreted antibiome of B. amyloliquefaciens developing as biofilms on roots. Non-ribosomal lipopeptides such as the plant immunity elicitor surfactin or the highly fungitoxic iturins and fengycins were readily produced albeit in different time-frames and quantities in the surrounding medium. Interestingly, MS/MS experiments performed directly from the gelified culture medium, also allowed to identify a new variant of surfactins released at later time points. However, no other bioactive compounds such as polyketides were detected at any time, strongly suggesting that the antibiome expressed in planta by B. amyloliquefaciens does not reflect the vast genetic arsenal devoted to the formation of such compounds. This first dynamic study reveals the power of MALDI MSI as tool to identify and map antibiotics synthesized by root-associated bacteria and more generally, to investigate plant-microbe interactions at the molecular level. [less ▲]

Detailed reference viewed: 15 (2 ULg)
Full Text
Peer Reviewed
See detailStochastic exposure to sub-lethal high temperature enhances exopolysaccharides (EPS) excretion and improves Bifidobacterium bifidum cell survival to freeze-drying
Nguyen, Huu Thanh ULg; Razafindralambo, Hary; Blecker, Christophe ULg et al

in Biochemical Engineering Journal (2014), 88

Exposure of microbial cells to sub-lethal stresses is known to increase cell robustness. In this work, a two-compartment bioreactor in which microbial cells are stochastically exposed to sub-lethal ... [more ▼]

Exposure of microbial cells to sub-lethal stresses is known to increase cell robustness. In this work, a two-compartment bioreactor in which microbial cells are stochastically exposed to sub-lethal temperature stresses has been used in order to investigate the response of the stress sensitive Bifidobacterium bifidum THT 0101 to downstream processing operations. A stochastic model validated by residence time distribution experiments has shown that in the heat-shock configuration, a two-compartment bioreactor (TCB) allows the exposure of microbial cells to sub-lethal temperature of 42°C for a duration comprised between 100 and 300 seconds. This exposure resulted in a significant increase of cell resistance to freeze-drying by comparison with cells cultivated in conventional bioreactors or in the TCB in the cold shock mode (CS-TCB). The mechanism behind this robustness seems to be related with the coating of microbial cells with exopolysaccharide (EPS), as assessed by the change of the zeta potential and the presence of higher EPS concentration after heat shock. Conditioning of Bifidobacteria on the basis of the heat shock technique is interesting from the practical and economical point of view since this strategy can be directly implemented in the bioreactor during stationary phase preceding cell recovery and freeze-drying [less ▲]

Detailed reference viewed: 38 (13 ULg)
Full Text
See detailEnzymatic process for the fractionation of baker's yeast cell wall (saccharomyces cerevisiae)
Borchani, Chema; Fonteyn, Fabienne; Jamin, Guilhem et al

Conference (2014, April 07)

Detailed reference viewed: 9 (0 ULg)
Full Text
See detailImaging MS: strategies for the identification of analytes
Debois, Delphine ULg; Smargiasso, Nicolas ULg; Jourdan, Emmanuel et al

Scientific conference (2014, April 04)

Detailed reference viewed: 27 (5 ULg)
Full Text
Peer Reviewed
See detailUse of on-line flow cytometry for the characterization of microbial stress dynamics during the bioprocess
Brognaux, Alison ULg; Han, Shanshan; Sorensen, Soren et al

Conference (2014, April 03)

Microbial cell population heterogeneity is now recognized as a major source of issues for the development and optimization of bioprocesses. Flow cytometry is a very powerful tool for the follow up of ... [more ▼]

Microbial cell population heterogeneity is now recognized as a major source of issues for the development and optimization of bioprocesses. Flow cytometry is a very powerful tool for the follow up of physiological properties of microbial cells in process-related conditions at the single cell level, and can be used to study the dynamics of segregation directly in bioreactors. In this context, specific interfaces have been developed in order to connect flow cytometer (FC) directly on bioreactor for automated analyses. In this work, we propose a simplified version of such interface and demonstrated its usefulness for multiplexed experiments. This automated FC system has been tested for the follow up of the dynamics of an E. coli pfis::gfpAAV fluorescent bio-reporter and its PI uptake, correlated with membrane permeability. This bioreporter is composed of a fis promoter, a growth dependent promoter-indicator of the nutrient status of cells, fused to a gene expressing an unstable variant of GFP. The results obtained showed that the dynamics of the GFP synthesis is complex and can be attributed to a complex set of biological parameters. Segregation in the membrane permeability has been noticed. This work demonstrates that a simplified version of on-line FC can be used at the process level for the investigation of the dynamics of complex physiological mechanisms. [less ▲]

Detailed reference viewed: 27 (9 ULg)
Full Text
Peer Reviewed
See detailCFD-based Compartment model for description of mixing in bioreactors
Delafosse, Angélique ULg; Calvo, Sébastien ULg; Collignon, Marie-Laure ULg et al

in Chemical Engineering Science (2014), 106

In most bioprocesses, it is fundamental to accurately predict the hydrodynamics behavior of bioreactors of different size and its interaction with the biological reaction. Computational Fluid Dynamics can ... [more ▼]

In most bioprocesses, it is fundamental to accurately predict the hydrodynamics behavior of bioreactors of different size and its interaction with the biological reaction. Computational Fluid Dynamics can provide detailed modeling about hydrodynamics and mixing. However, it is computationally intensive, especially when reactions are taken into account. Another way to predict hydrodynamics is the use of “Compartment” or “Network-of-zones” model which are much less demanding in computation time than CFD. However, compartments and fluxes between them are often defined by considering global quantities not representative of the flow complexity. To overcome the limitations of these two methods, a solution is to combine compartment modeling and CFD simulations. The aim of this study is to propose a compartment model where the flow rates between two adjacent compartments are easily computed from the velocity fields obtained by CFD. The mixing evolution predicted by the CFD-based compartment model have been then compared with mixing experiment results. Unlike a CFD mixing simulation and a classical compartment model, the CFD-based compartment model proposed in this work reproduces with a good accuracy the spatial distribution of concentrations during the mixing process and this, without any adjustable parameters. [less ▲]

Detailed reference viewed: 55 (13 ULg)
Full Text
Peer Reviewed
See detailScale-down effect on the extracellular proteome of Escherichia coli: correlation with membrane permeability and modulation according substrate heterogeneities
Brognaux, Alison ULg; Francis, Frédéric ULg; Twizere, Jean-Claude ULg et al

in Bioprocess and Biosystems Engineering (2014)

Protein leakage is induced in well-mixed fed-batch bioreactor by comparison with cultures carried out in scale-down conditions. This effect is attributed to a progressive increase of cell membrane ... [more ▼]

Protein leakage is induced in well-mixed fed-batch bioreactor by comparison with cultures carried out in scale-down conditions. This effect is attributed to a progressive increase of cell membrane permeability and the synthesis of several outer-membrane components allowing to cope with substrate limitation commonly found in high-cell density culture. A comparative analysis of protein leakage has thus been performed in well-mixed bioreactors and in scale-down devices. The extracellular proteome of E.coli has been investigated by 2D-gel electrophoresis and identified by subsequent MALDI-TOF analysis. On 110 picked spots, 67 proteins have been identified and the sub-localisation and the molecular function of these proteins have been determined. A majority of the extracellular proteome was composed of outer-membrane and periplasmic proteins (64%) confirming the fact that leakage is involved in high-cell density cultures. About 50% of this extracellular proteome was composed of transport and binding proteins. Furthermore, the more abundant spots on the gel corresponded to porin proteins and periplasmic transporters. In particular, the OmpC porin was found to be very abundant. Moreover, the scale-down effect on this extracellular proteome has been investigated by 2D-DIGE analysis (2-Dimensional Differential in-Gel Electrophoresis) and significant differences have been observed by comparison with culture carried out in well-mixed systems. Indeed, since substrate limitation signal is alleviated in this kind of apparatus, cell permeability was lowered as shown by flow cytometry. In scale-down conditions, protein leakage was thus less abundant. [less ▲]

Detailed reference viewed: 31 (10 ULg)
Full Text
Peer Reviewed
See detailScale-down effect on the extracellular proteome of Escherichia coli: correlation with membrane permeability and modulation according substrate heterogeneities
Brognaux, Alison ULg; Francis, Frédéric ULg; Twizere, Jean-Claude ULg et al

in Bioprocess and Biosystems Engineering (2014)

Protein leakage is induced in well-mixed fed-batch bioreactor by comparison with cultures carried out in scale-down conditions. This effect is attributed to a progressive increase of cell membrane ... [more ▼]

Protein leakage is induced in well-mixed fed-batch bioreactor by comparison with cultures carried out in scale-down conditions. This effect is attributed to a progressive increase of cell membrane permeability and the synthesis of several outer-membrane components allowing to cope with substrate limitation commonly found in high-cell density culture. A comparative analysis of protein leakage has thus been performed in well-mixed bioreactors and in scale-down devices. The extracellular proteome of E.coli has been investigated by 2D-gel electrophoresis and identified by subsequent MALDI-TOF analysis. On 110 picked spots, 67 proteins have been identified and the sub-localisation and the molecular function of these proteins have been determined. A majority of the extracellular proteome was composed of outer-membrane and periplasmic proteins (64%) confirming the fact that leakage is involved in high-cell density cultures. About 50% of this extracellular proteome was composed of transport and binding proteins. Furthermore, the more abundant spots on the gel corresponded to porin proteins and periplasmic transporters. In particular, the OmpC porin was found to be very abundant. Moreover, the scale-down effect on this extracellular proteome has been investigated by 2D-DIGE analysis (2-Dimensional Differential in-Gel Electrophoresis) and significant differences have been observed by comparison with culture carried out in well-mixed systems. Indeed, since substrate limitation signal is alleviated in this kind of apparatus, cell permeability was lowered as shown by flow cytometry. In scale-down conditions, protein leakage was thus less abundant. [less ▲]

Detailed reference viewed: 31 (10 ULg)
Full Text
See detailEffect of encapsulated nanoparticles on thermophillic anaerobic digestion
Al-Ahmad, Alaa Eddin ULg; Hiligsmann, Serge ULg; Lambert, Stéphanie ULg et al

Poster (2014, February 07)

Recently, enormous interest has been focused on biological applications of metal nanoparticles NPs due to their small size, high specified surface and their great potential in application to many science ... [more ▼]

Recently, enormous interest has been focused on biological applications of metal nanoparticles NPs due to their small size, high specified surface and their great potential in application to many science fields. The most studied process concerns zero valent palladium and iron NPs improving anaerobic biodegradation of chlorinated hydrocarbons (Windt et al., 2005). Moreover, investigation carried out in our lab showed that iron NPs encapsulated in silicate matrix may enhance hydrogen production by Clostridium butyricum (Beckers et al., 2013). Nevertheless the influences of metal NPs on methane producing anaerobic digestion have seldom been investigated. The present work investigates the enhancement effect of seven different metal NPs on methane production during the thermophilic anaerobic digestion. NPs of Cu, Pd, Pt, Ni, Co, Ag and Fe encapsulated in porous silica (SiO2) to prevent their coagulation and agglomeration, were added at concentration of 10-5mol/L in batch test (125ml serum bottles containing 70mL culture medium with 5g/L acetate monohydrate as the sole carbon substrate). Nickel, cobalt and iron NPs improved methane production from acetate. To confirm the previous results, the NPs were tested at different concentrations (10-4, 10-5, and 10-6 mol/L) with starch and glucose substrates. The results show that the impact increases with the increase of NPs concentrations up to 10-4 mol/L. The modified Gompertz equation was applied to describe the effect of NPs on anaerobic digestion. According to this model, the kinetic of methane production was particularly affected by nanoparticles addition. The values of the maximum methane production rate MPR (ml/day) was significantly higher 72.5% with nickel NPs at a concentration of 10-4 mol/L than the control without NPs. [less ▲]

Detailed reference viewed: 34 (7 ULg)
Full Text
Peer Reviewed
See detailUse of on-line flow cytometry for the characterization of microbial stress dynamics during the bioprocess
Brognaux, Alison ULg; Han, Shanshan; Sorensen, Soren et al

Poster (2014, February 07)

Detailed reference viewed: 13 (1 ULg)
Peer Reviewed
See detailNew alternatives to chemical pesticides: deciphering the action mechanisms of lipid based plant elicitors via complementary biophysical and biological approaches.
Nasir, Mehmet Nail ULg; Polo Lozano, Damien ULg; Luzuriaga Loaiza, Walter ULg et al

Poster (2014, February)

Nowadays, many health and environmental problems are caused by the use of chemical pesticides. In this context, an increasing demand for alternative products such as biopesticides has been observed. Among ... [more ▼]

Nowadays, many health and environmental problems are caused by the use of chemical pesticides. In this context, an increasing demand for alternative products such as biopesticides has been observed. Among biopesticides, elicitor molecules which are able to trigger immune defense responses in plants are one of the most promising options. Although numerous elicitors have been discovered, the mechanisms involved in the perception, by plants, of only a few molecules have been identified. These elicitors usually interact with proteic receptors but we have recently shown that they may also act on the lipid phase of the plasma membrane. This project first aims to improve our understanding of the molecular mechanisms involved in the recognition of specific lipid based elicitors (LBE). On that basis, the FIELD project will contribute to the design and the development of innovative compounds derived natural LBE. A multi-disciplinary approach, based on chemistry, bio-physics, bio-chemistry, and phytopathology will be followed by a consortium of different research groups from Gembloux Agro-Bio Tech in close collaboration with teams from foreign institutions. [less ▲]

Detailed reference viewed: 36 (5 ULg)