References of "Thomas, Annick"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMutational Analysis Of The Tre2 Oncogene Encoding An Inactive Rabgap
Bizimungu, C.; Thomas, Annick ULg; Brasseur, Robert ULg et al

in Biotechnology Letters (2007), 29(12), 1927-37

The TRE2 oncoprotein is structurally related to the RabGAP (GTPase-activating protein) family. However, TRE2 seems enzymatically inactive. Two regions are important for its lack of GAP activity. First ... [more ▼]

The TRE2 oncoprotein is structurally related to the RabGAP (GTPase-activating protein) family. However, TRE2 seems enzymatically inactive. Two regions are important for its lack of GAP activity. First, the TBC domain, forming the catalytically active domain of RabGAPs, is non-functional in the oncoprotein. Also involved in TRE2 inactivity is the 93-aa region flanking the TBC domain on the C-terminal side. In order to identify the residues responsible for non-functionality, we performed hydrophobic cluster analysis of the oncoprotein sequence, combined with secondary structure prediction, receptor-binding domain analysis, and a tilted peptide calculation. These analyses were complemented with site-directed and random mutagenesis experiments. On the basis of our data, we hypothesize that the lack of secondary structure of the region flanking the TBC domain in TRE2 may explain why this region plays a role in the lack of GAP activity, even when a potentially functional TBC domain is present. [less ▲]

Detailed reference viewed: 8 (1 ULg)
Full Text
Peer Reviewed
See detailMode Of Membrane Interaction And Fusogenic Properties Of A De Novo Transmembrane Model Peptide Depend On The Length Of The Hydrophobic Core
Lorin, A.; Charloteaux, Benoît ULg; Fridmann-Sirkis, Y. et al

in Journal of Biological Chemistry (2007), 282(25), 18388-96

Model peptides composed of alanine and leucine residues are often used to mimic single helical transmembrane domains. Many studies have been carried out to determine how they interact with membranes ... [more ▼]

Model peptides composed of alanine and leucine residues are often used to mimic single helical transmembrane domains. Many studies have been carried out to determine how they interact with membranes. However, few studies have investigated their lipid-destabilizing effect. We designed three peptides designated KALRs containing a hydrophobic stretch of 14, 18, or 22 alanines/leucines surrounded by charged amino acids. Molecular modeling simulations in an implicit membrane model as well as attenuated total reflection-Fourier transform infrared analyses show that KALR is a good model of a transmembrane helix. However, tryptophan fluorescence and attenuated total reflection-Fourier transform infrared spectroscopy indicate that the extent of binding and insertion into lipids increases with the length of the peptide hydrophobic core. Although binding can be directly correlated to peptide hydrophobicity, we show that insertion of peptides into a membrane is determined by the length of the peptide hydrophobic core. Functional studies were performed by measuring the ability of peptides to induce lipid mixing and leakage of liposomes. The data reveal that whereas KALR14 does not destabilize liposomal membranes, KALR18 and KALR22 induce 40 and 50% of lipid-mixing, and 65 and 80% of leakage, respectively. These results indicate that a transmembrane model peptide can induce liposome fusion in vitro if it is long enough. The reasons for the link between length and fusogenicity are discussed in relation to studies of transmembrane domains of viral fusion proteins. We propose that fusogenicity depends not only on peptide insertion but also on the ability of peptides to destabilize the two leaflets of the liposome membrane. [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailLipid-Destabilizing Properties Of The Hydrophobic Helices H8 And H9 From Colicin E1
Lins, Laurence ULg; El Kirat, K.; Charloteaux, Benoît ULg et al

in Molecular Membrane Biology (2007), 24(5-6), 419-30

Colicins are toxic proteins produced by Escherichia coli that must cross the membrane to exert their activity. The lipid insertion of their pf domain is linked to a conformational change which enables the ... [more ▼]

Colicins are toxic proteins produced by Escherichia coli that must cross the membrane to exert their activity. The lipid insertion of their pf domain is linked to a conformational change which enables the penetration of a hydrophobic hairpin. They provide useful models to more generally study insertion of proteins, channel formation and protein translocation in and across membranes. In this paper, we study the lipid-destabilizing properties of helices H8 and H9 forming the hydrophobic hairpin of colicin E1. Modelling analysis suggests that those fragments behave like tilted peptides. The latter are characterized by an asymmetric distribution of their hydrophobic residues when helical. They are able to interact with a hydrophobic/hydrophilic interface (such as a lipid membrane) and to destabilize the organized system into which they insert. Fluorescence techniques using labelled liposomes clearly show that H9, and H8 to a lesser extent, destabilize lipid particles, by inducing fusion and leakage. AFM assays clearly indicate that H8 and especially H9 induce membrane fragilization. Holes in the membrane are even observed in the presence of H9. This behaviour is close to what is seen with viral fusion peptides. Those results suggest that the peptides could be involved in the toroidal pore formation of colicin E1, notably by disturbing the lipids and facilitating the insertion of the other, more hydrophilic, helices that will form the pore. Since tilted, lipid-destabilizing fragments are also common to membrane proteins and to signal sequences, we suggest that tilted peptides should have an ubiquitous role in the mechanism of insertion of proteins into membranes. [less ▲]

Detailed reference viewed: 17 (0 ULg)
Full Text
Peer Reviewed
See detailIn Vitro Characterization Of The Homogalacturonan-Binding Domain Of The Wall-Associated Kinase Wak1 Using Site-Directed Mutagenesis
Decreux, Annabelle ULg; Thomas, Annick ULg; Spies, B. et al

in Phytochemistry (2006), 67(11), 1068-79

Wall-associated kinase 1--WAK1 is a transmembrane protein containing a cytoplasmic Ser/Thr kinase domain and an extracellular domain in contact with the pectin fraction of the plant cell wall in ... [more ▼]

Wall-associated kinase 1--WAK1 is a transmembrane protein containing a cytoplasmic Ser/Thr kinase domain and an extracellular domain in contact with the pectin fraction of the plant cell wall in Arabidopsis thaliana (L.) HEYNH. In a previous paper [Decreux, A., Messiaen, J., 2005. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol. 46, 268-278], we showed that a recombinant peptide expressed in yeast corresponding to amino acids 67-254 of the extracellular domain of WAK1 specifically interacts with commercial non-methylesterified homogalacturonic acid, purified homogalacturonans from Arabidopsis and oligogalacturonides in a calcium-induced conformation. In this report, we used a receptor binding domain sequence-based prediction method to identify four putative binding sites in the extracellular domain of WAK1, in which cationic amino acids were selected for substitution by site-directed mutagenesis. Interaction studies between mutated forms of WAK1 and homogalacturonans allowed us to identify and confirm at least five specific amino acids involved in the interaction with homogalacturonan dimers and multimers. The presence of this homogalacturonan-binding domain within the extracellular domain of WAK1 is discussed in terms of cell wall architecture and signal transduction. [less ▲]

Detailed reference viewed: 7 (1 ULg)
Full Text
Peer Reviewed
See detailLipid-Destabilising Properties Of A Peptide With Structural Plasticity
Lorin, A.; Thomas, Annick ULg; Stroobant, V. et al

in Chemistry and Physics of Lipids (2006), 141(1-2), 185-96

The Chameleon peptide (Cham) is a peptide designed from two regions of the GB1 protein, one folded as an alpha-helix and the other as a beta structure. Depending on the environment, the Cham peptide ... [more ▼]

The Chameleon peptide (Cham) is a peptide designed from two regions of the GB1 protein, one folded as an alpha-helix and the other as a beta structure. Depending on the environment, the Cham peptide adopts an alpha or a beta conformation when inserted in different locations of GB1. This environment dependence is also observed for tilted peptides. These short protein fragments, able to destabilise organised system, are mainly folded in beta structure in water and in alpha helix in a hydrophobic environment, like the lipid bilayer. In this paper, we tested whether the Cham peptide can be qualified as a tilted peptide. For this, we have compared the properties of Cham peptide (hydrophobicity, destabilising properties, conformation) to those of tilted peptides. The results suggest that Cham is a tilted peptide. Our study, together the presence of tilted fragments in transconformational proteins, suggests a relationship between tilted peptides and structural lability. [less ▲]

Detailed reference viewed: 14 (2 ULg)
Full Text
Peer Reviewed
See detailThe N-terminal 12 residue long peptide of HIV gp41 is the minimal peptide sufficient to induce significant T-cell-like membrane destabilization in vitro.
Charloteaux, Benoît ULg; Lorin, A.; Crowet, Jean-Marc ULg et al

in Journal of molecular biology (2006), 359(3), 597-609

Here, we predicted the minimal N-terminal fragment of gp41 required to induce significant membrane destabilization using IMPALA. This algorithm is dedicated to predict peptide interaction with a membrane ... [more ▼]

Here, we predicted the minimal N-terminal fragment of gp41 required to induce significant membrane destabilization using IMPALA. This algorithm is dedicated to predict peptide interaction with a membrane. We based our prediction of the minimal fusion peptide on the tilted peptide theory. This theory proposes that some protein fragments having a peculiar distribution of hydrophobicity adopt a tilted orientation at a hydrophobic/hydrophilic interface. As a result of this orientation, tilted peptides should disrupt the interface. We analysed in silico the membrane-interacting properties of gp41 N-terminal peptides of different length derived from the isolate BRU and from an alignment of 710 HIV strains available on the Los Alamos National Laboratory. Molecular modelling results indicated that the 12 residue long peptide should be the minimal fusion peptide. We then assayed lipid-mixing and leakage of T-cell-like liposomes with N-terminal peptides of different length as first challenge of our predictions. Experimental results confirmed that the 12 residue long peptide is necessary and sufficient to induce membrane destabilization to the same extent as the 23 residue long fusion peptide. In silico analysis of some fusion-incompetent mutants presented in the literature further revealed that they cannot insert into a modelled membrane correctly tilted. According to this work, the tilted peptide model appears to explain at least partly the membrane destabilization properties of HIV fusion peptide. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
Peer Reviewed
See detail"De novo" design of peptides with specific lipid-binding properties
Lins, Laurence ULg; Charloteaux, Benoît ULg; Heinen, C. et al

in Biophysical Journal (2006), 90(2), 470-479

In this study, we describe an in silico method to design peptides that can be made of non-natural amino acids and elicit specific membrane-interacting properties. The originality of the method holds in ... [more ▼]

In this study, we describe an in silico method to design peptides that can be made of non-natural amino acids and elicit specific membrane-interacting properties. The originality of the method holds in the capacities developed to design peptides from any non-natural amino acids as easily as from natural ones, and to test the structure stability by an angular dynamics rather than the currently-used molecular dynamics. The goal of this study was to design a non-natural tilted peptide. Tilted peptides are short protein fragments able to destabilize lipid membranes and characterized by an asymmetric distribution of hydrophobic residues along their helix structure axis. The method is based on the random generation of peptides and their election on three main criteria: mean hydrophobicity and the presence of at least one polar residue; tilted insertion at the level of the acyl chains of lipids of a membrane; and conformational stability in that hydrophobic phase. From 10,000,000 randomly-generated peptides, four met all the criteria. One was synthesized and tested for its lipid-destabilizing properties. Biophysical assays showed that the "de novo" peptide made of non-natural amino acids is helical either in solution or intolipids as tested by Fourier transform infrared spectroscopy and is able to induce liposome fusion. These results are in agreement with the calculations andvalidate the theoretical approach. [less ▲]

Detailed reference viewed: 18 (2 ULg)
Full Text
Peer Reviewed
See detailThe N-Terminal Juxtamembranous Domain Of Kcnq1 Is Critical For Channel Surface Expression - Implications In The Romano-Ward Lqt1 Syndrome
Dahimene, S.; Alcolea, S.; Naud, P. et al

in Circulation Research (2006), 99(10), 1076-83

arrhythmias in newborn children and adolescents but the cellular mechanisms involved in this dramatic issue remain, however, to be discovered. Here, we analyzed the trafficking of a series of N-terminal ... [more ▼]

arrhythmias in newborn children and adolescents but the cellular mechanisms involved in this dramatic issue remain, however, to be discovered. Here, we analyzed the trafficking of a series of N-terminal truncation mutants and identified a critical trafficking motif of KCNQ1. This determinant is located in the juxtamembranous region preceding the first transmembrane domain of the protein. Three mutations (Y111C, L114P and P117L) implicated in inherited Romano-Ward LQT1 syndrome, are embedded within this domain. Reexpression studies in both COS-7 cells and cardiomyocytes showed that the mutant proteins fail to exit the endoplasmic reticulum. KCNQ1 subunits harboring Y111C or L114P exert a dominant negative effect on the wild-type KCNQ1 subunit by preventing plasma membrane trafficking of heteromultimeric channels. The P117L mutation had a less pronounced effect on the trafficking of heteromultimeric channels but altered the kinetics of the current. Furthermore, we showed that the trafficking determinant in KCNQ1 is structurally and functionally conserved in other KCNQ channels and constitutes a critical trafficking determinant of the KCNQ channel family. Computed structural predictions correlated the potential structural changes introduced by the mutations with impaired protein trafficking. In conclusion, our studies unveiled a new role of the N-terminus of KCNQ channels in their trafficking and its implication in severe forms of LQT1 syndrome. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailRational Design Of Complementary Peptides To The Beta Amyloid 29-42 Fusion Peptide: An Application Of Pepdesign
Decaffmeyer, Marc; Lins, Laurence ULg; Charloteaux, Benoît ULg et al

in Biochimica et Biophysica Acta-Biomembranes (2006), 1758(3), 320-7

Peptides in solution currently exist under several conformations; an equilibrium which varies with solvent polarity. Despite or because of this structure versatility, peptides can be selective biological ... [more ▼]

Peptides in solution currently exist under several conformations; an equilibrium which varies with solvent polarity. Despite or because of this structure versatility, peptides can be selective biological tools: they can adapt to a target, vary conformation with solvents and so on. These capacities are crucial for cargo carriers. One promising way of using peptides in biotechnologies is to decipher their medium-sequence-structure-function relationships and one approach is molecular modelling. Only few "in silico" methods of peptide design are described in the literature. Most are used in support of experimental screening of peptide libraries. However, the way they are made does not teach us much for future researches. In this paper, we describe an "in silico" method (PepDesign) which starts by analysing the native interaction of a peptide with a target molecule in order to define which points are important. From there, a modelling protocol for the design of 'better' peptides is set. The PepDesign procedure calculates new peptides fulfilling the hypothesis, tests the conformational space of these peptides in interaction with the target by angular dynamics and goes up to the selection of the best peptide based on the analysis of complex structure properties. Experimental biological assays are finally used to test the selected peptides, hence to validate the approach. Applications of PepDesign are wide because the procedure will remain similar irrespective of the target which can be a protein, a drug or a nucleic acid. In this paper, we describe the design of peptides which binds to the fusogenic helical form of the C-terminal domain of the Abeta peptide (Abeta29-42). [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailPrediction Of Peptide Structure: How Far Are We?
Thomas, Annick ULg; Deshayes, S.; Decaffmeyer, Marc ULg et al

in Proteins-Structure Function and Bioinformatics (2006), 65(4), 889-97

Rational design of peptides is a challenge, which would benefit from a better knowledge of the rules of sequence-structure-function relationships. Peptide structures can be approached by spectroscopy and ... [more ▼]

Rational design of peptides is a challenge, which would benefit from a better knowledge of the rules of sequence-structure-function relationships. Peptide structures can be approached by spectroscopy and NMR techniques but data from these approaches too frequently diverge. Structures can also be calculated in silico from primary sequence information using three algorithms: Pepstr, Robetta, and PepLook. The most recent algorithm, PepLook introduces indexes for evaluating structural polymorphism and stability. For peptides with converging experimental data, calculated structures from PepLook and, to a lesser extent from Pepstr, are close to NMR models. The PepLook index for polymorphism is low and the index for stability points out possible binding sites. For peptides with divergent experimental data, calculated and NMR structures can be similar or, can be different. These differences are apparently due to polymorphism and to different conditions of structure assays and calculations. The PepLook index for polymorphism maps the fragments encoding disorder. This should provide new means for the rational design of peptides. [less ▲]

Detailed reference viewed: 8 (2 ULg)
Full Text
Peer Reviewed
See detailJuxtamembrane Protein Segments That Contribute To Recruitment Of Cholesterol Into Domains
Epand, Rf.; Thomas, Annick ULg; Brasseur, Robert ULg et al

in Biochemistry (2006), 45(19), 6105-14

We investigated the properties of several peptides with sequences related to LWYIK, a segment found in the gp41 protein of HIV and believed to play a role in sequestering this protein to a cholesterol ... [more ▼]

We investigated the properties of several peptides with sequences related to LWYIK, a segment found in the gp41 protein of HIV and believed to play a role in sequestering this protein to a cholesterol-rich domain in the membrane. This segment fulfills the requirements to be classified as a CRAC motif that has been suggested to predict those proteins that will partition into cholesterol-rich regions of the membrane. All of the peptides were studied with the terminal amino and carboxyl groups blocked, i.e., as N-acetyl-peptide-amides. Effects of cholesterol on the intensity of W emission generally parallel DSC evidence of sequestration of cholesterol. Modeling studies indicate that all of these peptides tend to partition with their mass center at the membrane interface at the level of the hydroxyl of cholesterol. Interaction with cholesterol is dual: van der Waals interactions between mainly hydrophobic surfaces and electrostatic stabilization of the cholesterol OH group. Thus, both experiments and modeling studies indicate that the preference of CRAC motifs for cholesterol-rich domains might be related to a membrane interfacial preference of the motif, to a capacity to wrap and block the cholesterol polar OH group by H-bond interactions, and to a capacity for peptide aromatic side chains to stack with cholesterol. These results were supported by studies of single mutations in the gp41 protein of HIV-1, in which L(679) is replaced with I. Despite the similarity of the properties of these amino acid residues, this single substitution resulted in a marked attenuation of the ability of JC53-BL HeLa-based HIV-1 indicator cells to form syncytia. [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailProtein-Nucleic Acid Recognition: Statistical Analysis Of Atomic Interactions And Influence Of Dna Structure
Lejeune, D.; Delsaux, N.; Charloteaux, Benoît ULg et al

in Proteins-Structure Function and Bioinformatics (2005), 61(2), 258-71

We analyzed structural features of 11,038 direct atomic contacts (either electrostatic, H-bonds, hydrophobic, or other van der Waals interactions) extracted from 139 protein-DNA and 49 protein-RNA ... [more ▼]

We analyzed structural features of 11,038 direct atomic contacts (either electrostatic, H-bonds, hydrophobic, or other van der Waals interactions) extracted from 139 protein-DNA and 49 protein-RNA nonhomologous complexes from the Protein Data Bank (PDB). Globally, H-bonds are the most frequent interactions (approximately 50%), followed by van der Waals, hydrophobic, and electrostatic interactions. From the protein viewpoint, hydrophilic amino acids are over-represented in the interaction databases: Positively charged amino acids mainly contact nucleic acid phosphate groups but can also interact with base edges. From the nucleotide point of view, DNA and RNA behave differently: Most protein-DNA interactions involve phosphate atoms, while protein-RNA interactions involve more frequently base edge and ribose atoms. The increased participation of DNA phosphate involves H-bonds rather than salt bridges. A statistical analysis was performed to find the occurrence of amino acid-nucleotide pairs most different from chance. These pairs were analyzed individually. Finally, we studied the conformation of DNA in the interaction sites. Despite the prevalence of B-DNA in the database, our results suggest that A-DNA is favored in the interaction sites. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailFusogenic Alzheimer'S Peptide Fragment A Beta (29-42) In Interaction With Lipid Bilayers: Secondary Structure, Dynamics, And Specific Interaction With Phosphatidyl Ethanolamine Polar Heads As Revealed By Solid-State Nmr
Ravault, S.; Soubias, O.; Saurel, O. et al

in Protein Science : A Publication of the Protein Society (2005), 14(5), 1181-9

The interaction of the native Alzheimer's peptide C-terminal fragment Abeta (29-42), and two mutants (G33A and G37A) with neutral lipid bilayers made of POPC and POPE in a 9:1 molar ratio was investigated ... [more ▼]

The interaction of the native Alzheimer's peptide C-terminal fragment Abeta (29-42), and two mutants (G33A and G37A) with neutral lipid bilayers made of POPC and POPE in a 9:1 molar ratio was investigated by solid-state NMR. This fragment and the lipid composition were selected because they represent the minimum requirement for the fusogenic activity of the Alzheimer's peptide. The chemical shifts of alanine methyl isotropic carbon were determined by MAS NMR, and they clearly demonstrated that the major form of the peptide equilibrated in membrane is not in a helical conformation. (2)H NMR, performed with acyl chain deuterated POPC, demonstrated that there is no perturbation of the acyl chain's dynamics and of the lipid phase transition temperature. (2)H NMR, performed with alanine methyl-deuterated peptide demonstrated that the peptide itself has a limited mobility below and above the lipid phase transition temperature (molecular order parameter equal to 0.94). MAS (31)P NMR revealed a specific interaction with POPE polar head as seen by the enhancement of POPE phosphorus nuclei T(2) relaxation. All these results are in favor of a beta-sheet oligomeric association of the peptide at the bilayer interface, preferentially recruiting phosphatidyl ethanolamine polar heads. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
Peer Reviewed
See detailRole Of The Lid Hydrophobicity Pattern In Pancreatic Lipase Activity
Thomas, Annick ULg; Allouche, M.; Basyn, F. et al

in Journal of Biological Chemistry (2005), 280(48), 40074-83

Pancreatic lipase is a soluble globular protein that must undergo structural modifications before it can hydrolyze oil droplets coated with bile salts. The binding of colipase and movement of the lipase ... [more ▼]

Pancreatic lipase is a soluble globular protein that must undergo structural modifications before it can hydrolyze oil droplets coated with bile salts. The binding of colipase and movement of the lipase lid open access to the active site. Mechanisms triggering lid mobility are unclear. The *KNILSQIVDIDGI* fragment of the lid of the human pancreatic lipase is predicted by molecular modeling to be a tilted peptide. Tilted peptides are hydrophobicity motifs involved in membrane fusion and more globally in perturbations of hydrophobic/hydrophilic interfaces. Analysis of this lid fragment predicts no clear consensus of secondary structure that suggests that its structure is not strongly sequence determined and could vary with environment. Point mutations were designed to modify the hydrophobicity profile of the [240-252] fragment and their consequences on the lipase-mediated catalysis were tested. Two mutants, in which the tilted peptide motif was lost, also have poor activity on bile salt-coated oil droplets and cannot be reactivated by colipase. Conversely, one mutant in which a different tilted peptide is created retains colipase dependence. These results suggest that the tilted hydrophobicity pattern of the [240-252] fragment is neither important for colipase binding to lipase, nor for interfacial binding but is important to trigger the maximal catalytic efficiency of lipase in the presence of bile salt. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailDistribution Of Hydrophobic Residues Is Crucial For The Fusogenic Properties Of The Ebola Virus Gp2 Fusion Peptide
Adam, B.; Lins, Laurence ULg; Stroobant, V. et al

in Journal of Virology (2004), 78(4), 2131-6

The lipid-destabilizing properties of the N-terminal domain of the GP2 of Ebola virus were investigated. Our results suggest that the domain of Ebola virus needed for fusion is shorter than that ... [more ▼]

The lipid-destabilizing properties of the N-terminal domain of the GP2 of Ebola virus were investigated. Our results suggest that the domain of Ebola virus needed for fusion is shorter than that previously reported. The fusogenic properties of this domain are related to its oblique orientation at the lipid/water interface owing to an asymmetric distribution of the hydrophobic residues when helical. [less ▲]

Detailed reference viewed: 5 (0 ULg)
Full Text
Peer Reviewed
See detailAromatic Side-Chain Interactions In Proteins: Near- And Far-Sequence Tyr-X Pairs
Meurisse, R.; Brasseur, Robert ULg; Thomas, Annick ULg

in Proteins-Structure Function and Genetics (2004), 54(3), 478-90

In the present study, an extensive analysis of the aromatic Tyr-X interactions is performed on a data set of 593 PDB structures, X being Phe, His, Tyr, and Trp. The nonredundant Tyr-X pairs (2645) were ... [more ▼]

In the present study, an extensive analysis of the aromatic Tyr-X interactions is performed on a data set of 593 PDB structures, X being Phe, His, Tyr, and Trp. The nonredundant Tyr-X pairs (2645) were retained and separated by both the residue distance in the sequence and the secondary structures they bridge. Similar to the Phe-X and His-X pairs, the far-sequence Tyr-X pairs (X partner > five apart in the sequence: 74%) show comparable secondary structures and conformers for either type of X partner, in contrast with the near-sequence Tyr-X pairs (26%). As the Phe-X pairs, the near-sequence Tyr-X pairs stabilize secondary structures, mainly the alpha- helices (positions 1, 3, and 4) and the beta-strands (position 2). Like the Phe-X and His-X pairs, most far-sequence Tyr-X pairs (34%) bridge beta-strands and only 11% bridge helices. As for the Phe-X and the His-X pairs, the X partners of the far-sequence Tyr-X pairs are frequently "above" the tyrosine ring with tilted and normal rings, whereas the X partner of the near-sequence Tyr-X pairs gradually moves from the "aside" to the "above" location, together with a progressive decrease of normal and increase of parallel rings, respectively. Unlike the His-X pairs, the interactions of the hetroatom in Tyr-X pairs are only favored with a sequence position +4 and over, owing to the spatial accessibility of the heteroatom. [less ▲]

Detailed reference viewed: 2 (0 ULg)
Full Text
Peer Reviewed
See detailPartial Atomic Charges Of Amino Acids In Proteins
Thomas, Annick ULg; Milon, A.; Brasseur, Robert ULg

in Proteins-Structure Function and Bioinformatics (2004), 56(1), 102-9

Using a semiempirical quantum mechanical procedure (FCPAC) we have calculated the partial atomic charges of amino acids from 494 high-resolution protein structures. To analyze the influence of the protein ... [more ▼]

Using a semiempirical quantum mechanical procedure (FCPAC) we have calculated the partial atomic charges of amino acids from 494 high-resolution protein structures. To analyze the influence of the protein's environment, we considered each residue under two conditions: either as the center of a tripeptide with PDB structure geometry (free) or as the center of 13-16 amino acid clusters extracted from the PDB structure (buried). The partial atomic charges from residues in helices and in sheets were separated. The FCPAC partial atomic charges of the Cbeta and Calpha of most residues correlate with their helix propensity, positively for Cbeta and negatively for Calpha (r2 = 0.76 and 0.6, respectively). The main consequence of burying residues in proteins is the polarization of the backbone C=O bond, which is more pronounced in helices than in sheets. The average shift of the oxygen partial charges that results from burying is -0.120 in helix and -0.084 in sheet with the charge of the proton as unit. Linear correlations are found between the average NMR chemical shifts and the average FCPAC partial charges of Calpha (r2 = 0.8-0.85), N (r3 = 0.67-0.72), and Cbeta (r2 = 0.62) atoms. Correlations for helix and beta-sheet FCPAC partial charges show parallel regressions, suggesting that the charge variations due to burying in proteins differentiate between the dihedral angle effects and the polarization of backbone atoms. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailPiracetam Inhibits The Lipid-Destabilising Effect Of The Amyloid Peptide A Beta C-Terminal Fragment
Mingeot-Leclercq, Mp.; Lins, Laurence ULg; Bensliman, M. et al

in Biochimica et Biophysica Acta-Biomembranes (2003), 1609(1), 28-38

Amyloid peptide (Abeta) is a 40/42-residue proteolytic fragment of a precursor protein (APP), implicated in the pathogenesis of Alzheimer's disease. The hypothesis that interactions between Abeta ... [more ▼]

Amyloid peptide (Abeta) is a 40/42-residue proteolytic fragment of a precursor protein (APP), implicated in the pathogenesis of Alzheimer's disease. The hypothesis that interactions between Abeta aggregates and neuronal membranes play an important role in toxicity has gained some acceptance. Previously, we showed that the C-terminal domain (e.g. amino acids 29-42) of Abeta induces membrane permeabilisation and fusion, an effect which is related to the appearance of non-bilayer structures. Conformational studies showed that this peptide has properties similar to those of the fusion peptide of viral proteins i.e. a tilted penetration into membranes. Since piracetam interacts with lipids and has beneficial effects on several symptoms of Alzheimer's disease, we investigated in model membranes the ability of piracetam to hinder the destabilising effect of the Abeta 29-42 peptide. Using fluorescence studies and 31P and 2H NMR spectroscopy, we have shown that piracetam was able to significantly decrease the fusogenic and destabilising effect of Abeta 29-42, in a concentration-dependent manner. While the peptide induced lipid disorganisation and subsequent negative curvature at the membrane-water interface, the conformational analysis showed that piracetam, when preincubated with lipids, coats the phospholipid headgroups. Calculations suggest that this prevents appearance of the peptide-induced curvature. In addition, insertion of molecules with an inverted cone shape, like piracetam, into the outer membrane leaflet should make the formation of such structures energetically less favourable and therefore decrease the likelihood of membrane fusion. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
Peer Reviewed
See detailAromatic Side-Chain Interactions In Proteins. Near- And Far-Sequence His-X Pairs
Meurisse, R.; Brasseur, Robert ULg; Thomas, Annick ULg

in Biochimica et Biophysica Acta-Proteins and Proteomics (2003), 1649(1), 85-96

Several studies have analysed aromatic interactions, involving mostly phenylalanine, tyrosine and tryptophan. Only a few studies have considered histidine as an interacting aromatic residue. An extensive ... [more ▼]

Several studies have analysed aromatic interactions, involving mostly phenylalanine, tyrosine and tryptophan. Only a few studies have considered histidine as an interacting aromatic residue. An extensive analysis of aromatic His-X interactions is performed here on a data set of 593 PDB structures: 68% of the histidine are involved in aromatic pairs and 1271 non-redundant His-X pairs were analysed. Thirty percent of these pairs involve an aromatic partner less than 6 apart in the sequence. These near-sequence pairs correspond to conformations which stabilise secondary structures, mainly alpha-helices when the residues are 4 apart and beta-strands when they are 2 apart in the sequence. The partners of the other His-X pairs (887, 70%) are more than 5 apart in the sequence. Of these far-sequence pairs, 35% bridge beta strands and only 9% helices. The near-sequence pairs are sterically constrained as supported by conformer distribution. The X partners of far-sequence His-X pairs are mainly "above" the histidine ring with tilted and normal rings, corresponding to a "T shape; face to edge" orientation. Phenylalanine, the only aromatic residue with no heteroatom, is a disfavoured partner, whereas histidine is the preferred one. Heteroatom-heteroatom interactions are favoured in near-sequence as well as in far-sequence His-His, His-Trp and His-Tyr pairs. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailAnalysis Of Accessible Surface Of Residues In Proteins
Lins, Laurence ULg; Thomas, Annick ULg; Brasseur, Robert ULg

in Protein Science : A Publication of the Protein Society (2003), 12(7),

Detailed reference viewed: 6 (0 ULg)