References of "Struman, Ingrid"
     in
Bookmark and Share    
Peer Reviewed
See detailMiR-146a an angiostatic miRNA elevated in peripartum cardiomyopathy
Halkein, Julie ULg; Tabruyn, Sébastien ULg; Haghikia, Arash et al

Poster (2012, January)

Detailed reference viewed: 41 (2 ULg)
Full Text
Peer Reviewed
See detail16-kDa prolactin and bromocriptine in postpartum cardiomyopathy.
Hilfiker-Kleiner, Denise; Struman, Ingrid ULg; Hoch, Melanie et al

in Current Heart Failure Reports (2012), 9(3), 174-82

Peripartum cardiomyopathy (PPCM) is a potentially life-threatening heart disease emerging toward the end of pregnancy or in the first postpartal months in previously healthy women. Recent data suggest a ... [more ▼]

Peripartum cardiomyopathy (PPCM) is a potentially life-threatening heart disease emerging toward the end of pregnancy or in the first postpartal months in previously healthy women. Recent data suggest a central role of unbalanced peri-/postpartum oxidative stress that triggers the proteolytic cleavage of the nursing hormone prolactin (PRL) into a potent antiangiogenic, proapoptotic, and proinflammatory 16-kDa PRL fragment. This notion is supported by the observation that inhibition of PRL secretion by bromocriptine, a dopamine D2-receptor agonist, prevented the onset of disease in an animal model of PPCM and by first clinical experiences where bromocriptine seem to exert positive effects with respect to prevention or treatment of PPCM patients. Here, we highlight the current state of knowledge on diagnosis of PPCM, provide insights into the biology and pathophysiology of 16-kDa PRL and bromocriptine, and outline potential consequences for the clinical management and treatment options for PPCM patients. [less ▲]

Detailed reference viewed: 28 (2 ULg)
Full Text
Peer Reviewed
See detailMicroRNA-146a, a downstream effector of 16kDa prolactin, impairs the endothelium-cardiomyocyte cross-talk in peripartum cardiomyopathy
Struman, Ingrid ULg; Halkein, Julie ULg; Tabruyn, Sébastien ULg et al

in FASEB meeting:the Growth Hormone/Prolactin Family in Biology and Disease. (2012)

Detailed reference viewed: 19 (2 ULg)
Full Text
Peer Reviewed
See detailDre-miR-2188 Targets Nrp2a and Mediates Proper Intersegmental Vessel Development in Zebrafish Embryos.
Soares, Ana R.; Reverendo, Marisa; Pereira, Patricia M. et al

in PLoS ONE (2012), 7(6), 39417

BACKGROUND: MicroRNAs (miRNAs) are a class of small RNAs that are implicated in the control of eukaryotic gene expression by binding to the 3'UTR of target mRNAs. Several algorithms have been developed ... [more ▼]

BACKGROUND: MicroRNAs (miRNAs) are a class of small RNAs that are implicated in the control of eukaryotic gene expression by binding to the 3'UTR of target mRNAs. Several algorithms have been developed for miRNA target prediction however, experimental validation is still essential for the correct identification of miRNA targets. We have recently predicted that Neuropilin2a (Nrp2a), a vascular endothelial growth factor receptor which is essential for normal developmental angiogenesis in zebrafish, is a dre-miR-2188 target. METHODOLOGY: Here we show that dre-miR-2188 targets the 3'-untranslated region (3'UTR) of Nrp2a mRNA and is implicated in proper intersegmental vessel development in vivo. Over expression of miR-2188 in zebrafish embryos down regulates Nrp2a expression and results in intersegmental vessel disruption, while its silencing increases Nrp2a expression and intersegmental vessel sprouting. An in vivo GFP sensor assay based on a fusion between the GFP coding region and the Nrp2a 3'UTR confirms that miR-2188 binds to the 3'UTR of Nrp2a and inhibits protein translation. CONCLUSIONS: We demonstrate that miR-2188 targets Nrp2a and affects intersegmental vessel development in zebrafish embryos. [less ▲]

Detailed reference viewed: 17 (1 ULg)
Full Text
Peer Reviewed
See detailA peptide mimicking the C-terminal part of the reactive center loop induces the transition to the latent form of Plasminogen Activator Inhibitor Type-1
D'Amico, Salvino ULg; Martial, Joseph ULg; Struman, Ingrid ULg

in FEBS Letters (2012), 586

Plasminogen Activator Inhibitor-1 (PAI-1) is the primary inhibitor of plasminogen activators (uPA and tPA) and thus plays a central role in fibrinolysis. The spontaneous insertion of its Reactive Centre ... [more ▼]

Plasminogen Activator Inhibitor-1 (PAI-1) is the primary inhibitor of plasminogen activators (uPA and tPA) and thus plays a central role in fibrinolysis. The spontaneous insertion of its Reactive Centre Loop (RCL) into beta-sheet A is responsible for its irreversible conversion into the inactive latent form. In this study, we used two peptides mimicking residues P14-P9 and P8-P3 of the RCL so as to understand this dynamic process. We show that both peptides inhibit the formation of PAI 1/uPA and PAI-1/tPA complexes via two different mechanisms. Targeting the N-terminal part of the loop induces the cleavage of PAI-1 by the proteases uPA/tPA while targeting its C-terminal part greatly favors the irreversible formation of latent PAI-1. [less ▲]

Detailed reference viewed: 56 (37 ULg)
Full Text
Peer Reviewed
See detailThe Antiangiogenic 16K Prolactin Impairs Functional Tumor Neovascularization by Inhibiting Vessel Maturation
Nguyen, Ngoc-Quynh-Nhu ULg; Castermans, Karolien; Berndt, Sarah et al

in PLoS ONE (2011), 6(11), 27318-27318

Background: Angiogenesis, the formation of new blood vessels from existing vasculature, plays an essential role in tumor growth, invasion, and metastasis. 16K hPRL, the antiangiogenic 16-kDa N-terminal ... [more ▼]

Background: Angiogenesis, the formation of new blood vessels from existing vasculature, plays an essential role in tumor growth, invasion, and metastasis. 16K hPRL, the antiangiogenic 16-kDa N-terminal fragment of human prolactin was shown to prevent tumor growth and metastasis by modifying tumor vessel morphology. Methodology/Principal Findings: Here we investigated the effect of 16K hPRL on tumor vessel maturation and on the related signaling pathways. We show that 16K hPRL treatment leads, in a murine B16-F10 tumor model, to a dysfunctional tumor vasculature with reduced pericyte coverage, and disruption of the PDGF-B/PDGFR-B, Ang/Tie2, and Delta/Notch pathways. In an aortic ring assay, 16K hPRL impairs endothelial cell and pericyte outgrowth from the vascular ring. In addition, 16K hPRL prevents pericyte migration to endothelial cells. This event was independent of a direct inhibitory effect of 16K hPRL on pericyte viability, proliferation, or migration. In endothelial cell-pericyte cocultures, we found 16K hPRL to disturb Notch signaling. Conclusions/Significance: Taken together, our data show that 16K hPRL impairs functional tumor neovascularization by inhibiting vessel maturation and for the first time that an endogenous antiangiogenic agent disturbs Notch signaling. These findings provide new insights into the mechanisms of 16K hPRL action and highlight its potential for use in anticancer therapy. [less ▲]

Detailed reference viewed: 89 (20 ULg)
Peer Reviewed
See detailInvolvement of z-MMP-2 in Zebrafish lymphangiogenesis
Paupert, Jenny ULg; Pendeville, Hélène; Detry, Benoît ULg et al

Poster (2011, May)

Detailed reference viewed: 7 (0 ULg)
Peer Reviewed
See detailThe antiangiogenic 16K prolactin disturbs functional tumor neovascularization by affecting vessel maturation
Nguyen, Ngoc-Quynh-Nhu ULg; Castermans, Karolien; Berndt, Sarah et al

Poster (2011, May)

16K hPRL, the antiangiogenic 16-kDa N-terminal fragment of human prolactin was shown to prevent tumor growth and metastasis by modifying tumor vessel morphology. Here we investigated the effect of 16K ... [more ▼]

16K hPRL, the antiangiogenic 16-kDa N-terminal fragment of human prolactin was shown to prevent tumor growth and metastasis by modifying tumor vessel morphology. Here we investigated the effect of 16K hPRL on tumor vessel maturation and on the related signaling pathways. We show that 16K hPRL treatment leads, in a murine B16-F10 tumor model, to a dysfunctional tumor vasculature with reduced pericyte coverage, and disruption of the PDGF-B/PDGFR-B, Ang/Tie2, and Delta/Notch pathways. In an aortic ring assay, 16K hPRL impairs endothelial cell and pericyte outgrowth from the vascular ring. In addition, 16K hPRL prevents pericyte migration to endothelial cells. This event was independent of a direct inhibitory effect of 16K hPRL on pericyte viability, proliferation, or migration. In endothelial cell-pericyte cocultures, we found 16K hPRL to disturb Notch signaling, this being the first time such an effect is observed with an endogenous antiangiogenic agent. These findings provide new insights into the mechanisms of 16K hPRL action and highlight its potential for use in anticancer therapy. [less ▲]

Detailed reference viewed: 34 (5 ULg)
Peer Reviewed
See detailMir-146a : A new angiostatic miRNA with tumor-suppressive properties
Halkein, Julie ULg; Castermans, Karolien; Malvaux, Ludovic et al

Poster (2011, March)

Detailed reference viewed: 6 (2 ULg)
Peer Reviewed
See detailMiR-146a an angiostatic miRNA elevated in peripartum cardiomyopathy
Halkein, Julie ULg; Castermans, Karolien; Malvaux, Ludovic et al

Poster (2011, March)

Detailed reference viewed: 13 (4 ULg)
Peer Reviewed
See detailMiR-146a: an angiostatic miRNA with tumor-suppressive properties
Halkein, Julie ULg; Bovy, Nicolas ULg; Castermans, Karolien et al

Poster (2011, February)

Detailed reference viewed: 17 (7 ULg)
Peer Reviewed
See detailMiR-146a an angiostatic miRNA elevated in peripartum cardiomyopathy
Halkein, Julie ULg; Castermans, Karolien; Malvaux, Ludovic et al

Poster (2011, February)

Detailed reference viewed: 9 (3 ULg)
Peer Reviewed
See detailmicroRNA-21 Exhibits Anti-Angiogenic Function by Targeting RhoB Expression in Endothelial Cells
Sabatel, Céline; Malvaux, Ludovic; Bovy, Nicolas ULg et al

Poster (2011, February)

Detailed reference viewed: 9 (3 ULg)
Peer Reviewed
See detailMiR-146a an angiostatic miRNA elevated in peripartum cardiomyopathy
Halkein, Julie ULg; Castermans, Karolien; Malvaux, Ludovic et al

Poster (2011, January)

Detailed reference viewed: 13 (3 ULg)
Full Text
Peer Reviewed
See detailThe Angiostatic Protein 16K Human Prolactin Significantly Prevents Tumor-Induced Lymphangiogenesis by Affecting Lymphatic Endothelial Cells.
Kinet, Virginie; Castermans, K; Herkenne, Stéphanie ULg et al

in Endocrinology (2011)

The 16-kDa angiostatic N-terminal fragment of human prolactin (16K hPRL) has been reported to be a new potent anticancer compound. This protein has already proven its efficiency in several mouse tumor ... [more ▼]

The 16-kDa angiostatic N-terminal fragment of human prolactin (16K hPRL) has been reported to be a new potent anticancer compound. This protein has already proven its efficiency in several mouse tumor models in which it prevented tumor-induced angiogenesis and delayed tumor growth. In addition to angiogenesis, tumors also stimulate the formation of lymphatic vessels, which contribute to tumor cell dissemination and metastasis. However, the role of 16K hPRL in tumor-induced lymphangiogenesis has never been investigated. We establish in vitro that 16K hPRL induces apoptosis and inhibits proliferation, migration, and tube formation of human dermal lymphatic microvascular endothelial cells. In addition, in a B16F10 melanoma mouse model, we found a decreased number of lymphatic vessels in the primary tumor and in the sentinel lymph nodes after 16K hPRL treatment. This decrease is accompanied by a significant diminished expression of lymphangiogenic markers in primary tumors and sentinel lymph nodes as determined by quantitative RT-PCR. These results suggest, for the first time, that 16K hPRL is a lymphangiostatic as well as an angiostatic agent with antitumor properties. [less ▲]

Detailed reference viewed: 66 (6 ULg)