References of "Seutin, Vincent"
     in
Bookmark and Share    
See detailDirect induction of burst firing by SK channel blockade in serotonergic neurons in vivo
Rouchet, Nathalie; Waroux, Olivier ULg; Moreau, Jacqueline ULg et al

Scientific conference (2007, November 04)

Small conductance calcium-activated potassium channels (SK channels) are widely expressed throughout the central nervous system and underlie the medium afterhyperpolarization following a single or a train ... [more ▼]

Small conductance calcium-activated potassium channels (SK channels) are widely expressed throughout the central nervous system and underlie the medium afterhyperpolarization following a single or a train of action potentials. It has been shown that they are involved in the regulation of the excitability and the firing pattern of several types of neurons. In vivo, serotonergic (5-HT) neurons of the dorsal raphe nucleus usually show a tonic pattern of discharge, but they can also display repetitive burst firing activity, usually involving doublets of closely spaced (< 20 ms) action potentials. It has been shown that burst firing is correlated with an increase in transmitter release and postsynaptic effects (Gartside et al., Neuroscience, 98, 295-300, 2000). We hypothesized that SK channels modulate the firing pattern of 5-HT neurons. In a preliminary study, extracellular single-cell recordings combined with iontophoresis showed that UCL1684, a water soluble SK blocker (200 µM), significantly increased the % of spikes produced in bursts in 60% of presumed serotonergic neurons in the anesthetized rat. We confirm here this observation by demonstrating that UCL1684 significantly increased the production of doublets in 17 out of 25 serotonergic neurons. In order to explore whether a GABAergic input was involved in this effect, additional experiments were performed in the presence of the specific GABAA antagonist SR 95531. In these conditions, 50 % (5 out of 10) of serotonergic neurons showed an increase in the production of doublets when UCL 1684 was applied (p = 0.31 vs control), suggesting that a GABAergic input is not implicated in the regulation of the firing pattern of 5-HT neurons by the SK blocker. Finally, the effect of SK channel blockade was explored in vitro in slices. Bath application of the SK blocker apamin (300 nM) did not induce bursting in 15 out of 18 neurons (p < 0.001 vs in vivo control conditions), although it did increase the coefficient of variation of the interspike intervals.Taken together, our results suggest that SK blockade induces burst firing in a majority of dorsal raphe serotonergic neurons. This effect does not involve GABAergic interneurons, but requires an input that is only present in vivo. [less ▲]

Detailed reference viewed: 3 (1 ULg)
Full Text
Peer Reviewed
See detailCharacterization of 4-(2-hydroxyphenyl)-1-[2 '-[N-(2 ''-pyridinyl)-p-fluorobenzamido]ethyl]piperazine (p-DMPPF) as a new potent 5-HT1A antagonist
Defraiteur, Caroline ULg; Plenevaux, Alain ULg; Scuvée-Moreau, Jacqueline ULg et al

in British Journal of Pharmacology (2007), 152(6), 952-958

Background and purpose: The identification of potent and selective radioligands for the mapping of 5-HT receptors is interesting both for clinical and experimental research. The aim of this study was to ... [more ▼]

Background and purpose: The identification of potent and selective radioligands for the mapping of 5-HT receptors is interesting both for clinical and experimental research. The aim of this study was to compare the potency of a new putative 5-HT1A receptor antagonist, p-DMPPF, (4-(2-hydroxyphenyl)-1-[2'-[N-(2''-pyridinyl)-p-fluorobenzamido]-ethyl] piperazine) with that of the well-known 5-HT1A antagonists, WAY-100635(N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide) and its fluorobenzoyl analogue, p-MPPF (4-(2-methoxyphenyl)-1-[2'-[N-(2''-pyridinyl)p-fluorobenzamido] ethyl] piperazine). Experimental approach: Single cell extracellular recordings of dorsal raphe (DR) neurones were performed in rat brain slices. The potency of each compound at antagonizing the effect of the 5-HT1A agonist, 8-OH-DPAT [8-hydroxy-2-(di-npropylamino)tetraline], was quantified using the Schild equation. The pharmacological profile of p-DMPPF was defined using competition binding assays. Key results: Consistently with a 5-HT1A receptor antagonist profile, incubation of slices with an equimolar (10 nM) concentration of each compound markedly reduced the inhibitory effect of 8-OH-DPAT on the firing rate of DR neurones, causing a significant rightward shift in its concentration-response curve. The rank order of potency of the antagonists was WAY-100635 > p-DMPPF >= p-MPPF. The sensitivity of DR neurones to the inhibitory effect of 8-OH-DPAT was found to be heterogeneous. The binding experiments demonstrated that p-DMPPF is highly selective for 5-HT1A receptors, with a K-i value of 7 nM on these receptors. Conclusions and implications: The potency of the new compound, p-DMPPF, as a 5-HT1A antagonist is similar to that of p-MPPF in our electrophysiological assay. Its selectivity towards 5-HT1A receptors makes it a good candidate for clinical development. [less ▲]

Detailed reference viewed: 53 (26 ULg)
Full Text
Peer Reviewed
See detailSynthesis and Radioligand Binding Studies of Bis-Isoquinolinium Derivatives as Small Conductance Ca(2+)-Activated K(+) Channel Blockers
Graulich, Amaury ULg; Dilly, Sébastien ULg; Farce, Amaury et al

in Journal of Medicinal Chemistry (2007), 50(21), 5070-5075

Starting from the scaffold of N-methyllaudanosine and N-methylnoscapine, which are known small conductance Ca2+-activated K+ channel blockers, original bis-isoquinolinium derivatives were synthezised and ... [more ▼]

Starting from the scaffold of N-methyllaudanosine and N-methylnoscapine, which are known small conductance Ca2+-activated K+ channel blockers, original bis-isoquinolinium derivatives were synthezised and evaluated using binding studies, electrophysiology, and molecular modeling. These quaternary compounds are powerful blockers, and the most active ones have 10 times more affinity for the channels than dequalinium. The unsubstituted compounds possess a weaker affinity than the analogues having a 6,7-dimethoxy- or a 6,7,8-trimethoxy substitution. The length of the linker has no influence in the alkane derivatives. In relation to the xylene derivatives, the affinities are higher for the ortho and meta isomers. These results are well corroborated by a molecular modeling study. Finally, the most effective compounds have been tested in electrophysiological experiments on midbrain dopaminergic neurons and demonstrate the blocking potential of the apamin-sensitive after-hyperpolarization. [less ▲]

Detailed reference viewed: 77 (23 ULg)
Full Text
Peer Reviewed
See detailSK channels are on the move
Seutin, Vincent ULg; Liégeois, Jean-François ULg

in British Journal of Pharmacology (2007), 151(5), 568-570

Small-conductance Ca (2+) activated K+ channels (SK channels) underlie the medium duration after hyperpolarization that follows single or trains of action potentials in many types of neurons. Three ... [more ▼]

Small-conductance Ca (2+) activated K+ channels (SK channels) underlie the medium duration after hyperpolarization that follows single or trains of action potentials in many types of neurons. Three subtypes of SK subunits, SK1 (K(Ca)2.1), SK2 (K(Ca)2.2) and SK3 (K(Ca)2.3), have been cloned and are expressed differentially within the central nervous system (CNS). A paper in this issue of BJP reports the discovery of the first example of a positive modulator displaying not only selectivity for SK channels over other channels, but also a subtype selectivity among SK and analogous channels (SK3 > SK2 >> SK1 = IK). Together with other recent progress in the field, this finding enriches the repertoire of tools available to test the hypothesis that SK channels may be targets for future CNS drugs. [less ▲]

Detailed reference viewed: 35 (10 ULg)
Full Text
Peer Reviewed
See detailCharacterization of the neurotoxicity induced by the extract of Magnistipula butayei (Chrysobalanaceae) in rat: Effects of a new natural convulsive agent
Karangwa, Charles; Esters, Virginie ULg; Tits, Monique ULg et al

in Toxicon (2007), 49(8), 1109-1119

This study was designed to document convulsant and neurotoxic properties of extracts of a tropical tree, Magnistipula butayei subsp. Montana, and to investigate the involvement of the glutamatergic system ... [more ▼]

This study was designed to document convulsant and neurotoxic properties of extracts of a tropical tree, Magnistipula butayei subsp. Montana, and to investigate the involvement of the glutamatergic system in these effects. Continuous behavioral observations and electroencephalographic (EEG) records were obtained after per os administration of an aqueous extract of Magnistipula (MBMAE) in rats. MBMAE (800 mg/kg) induced behavioral changes resembling motor limbic seizures: staring and head tremor, automatisms, forelimb clonic movements and violent tonic-clonic seizures leading to death in all animals. Concomitantly, important seizure activity that gradually evolved to epileptiform activity was recorded on the EEG. Moreover, c-Fos immunohistochemistry has revealed an increased c-Fos expression in the dentate gyrus and in piriform, peri- and entorhinal cortices 2 and 4h after treatment. This expression pattern suggested that the mechanism of action for the MBMAE is similar to that observed in glutamate-induced models of epilepsy. The MBMAE increased cell death also in hippocampal cell cultures. Furthermore, the build-up of convulsive activity and epileptic discharges induced by MBMAE in rat were abolished by MK-801, an NMDA receptor antagonist. Our study suggests that MBMAE contains a potent toxin, with a powerful neurotoxic activity in rat, and corresponding to a new natural component(s) that act as an NMDA-mediated convulsant molecule. [less ▲]

Detailed reference viewed: 78 (22 ULg)
Full Text
Peer Reviewed
See detailMetaplastic effect of apamin on LTP and paired-pulse facilitation
Ris, L.; Capron, B.; Sclavons, C. et al

in Learning & Memory (2007), 14(6), 390-399

In area CA1 of hippocampal slices, a single 1-sec train of 100-Hz stimulation generally triggers a short-lasting long-term potentiation (S-LTP) of 1-2 h. Here, we found that when such a train was applied ... [more ▼]

In area CA1 of hippocampal slices, a single 1-sec train of 100-Hz stimulation generally triggers a short-lasting long-term potentiation (S-LTP) of 1-2 h. Here, we found that when such a train was applied 45 min after application of the small conductance Ca2+-activated K+ (SK) channel blocker apamin, it induced a long-lasting LTP (L-LTP) of several hours, instead of an S-LTP. Apamin-induced SK channel blockage is known to resist washing. Nevertheless, the aforementioned effect is not a mere delayed effect; it is metaplastic. Indeed, when a single train was delivered to the Schaffer's collaterals during apamin application, it induced an S-LTP, like in the control situation. At the moment of this LTP induction (15th min of apamin application), the SK channel blockage was nevertheless complete. Indeed, at that time, under the influence of apamin, the amplitude of the series of field excitatory postsynaptic potentials (fEPSPs) triggered by a stimulation train was increased. We found that the metaplastic effect of apamin on LTP was crucially dependent on the NO-synthase pathway, whereas the efficacy of the NMDA receptors was not modified at the time of its occurrence. We also found that apamin produced an increase in paired-pulse facilitation not during, but after, the application of the drug. Finally, we found that the induction of each of these two metaplastic phenomena was mediated by NMDA receptors. A speculative unitary hypothesis to explain these phenomena is proposed. [less ▲]

Detailed reference viewed: 29 (7 ULg)
Full Text
Peer Reviewed
See detailSynthesis and radioligand binding studies of methoxylated 1,2,3,4-tetrahydroisoquinolinium derivatives as ligands of the apamin-sensitive Ca2+- activated K+ channels
Graulich, Amaury ULg; Scuvée-Moreau, Jacqueline ULg; Alleva, Livia ULg et al

in Journal of Medicinal Chemistry (2006), 49(24), 7208-7214

Several methoxylated 1,2,3,4-tetrahydroisoquinoliniums derived from N-methyl-laudanosine and N-methyl-noscapine were synthesized and evaluated for their affinity for apamin-sensitive binding sites. The ... [more ▼]

Several methoxylated 1,2,3,4-tetrahydroisoquinoliniums derived from N-methyl-laudanosine and N-methyl-noscapine were synthesized and evaluated for their affinity for apamin-sensitive binding sites. The quaternary ammonium derivatives have a higher affinity with regard to the tertiary amines. 6,7-Dimethoxy analogues possess a higher affinity than the 6,8- and 7,8- dimethoxy isomers. A 3,4-dimethoxybenzyl or a 2-naphthylmethyl moiety in C-1 position are more favorable than a 3,4-dimethoxyphenethyl group. Smaller groups such as propyl or isobutyl are unfavorable. In 6,7-dimethoxy analogues, increasing the size and lipophilicity with a naphthyl group in the C-1 position leads to a slight increase of affinity, while the same group in the 6,7,8- trimethoxy series is less favorable. The 6,7,8- trimethoxy derivative 3f is the first tertiary amine in the series to possess an affinity close to that of N-methyl-laudanosine and N-methyl-noscapine. Moreover, electrophysiological studies show that the most effective compound 4f blocks the apamin-sensitive afterhyperpolarization in rat dopaminergic neurons. [less ▲]

Detailed reference viewed: 28 (13 ULg)
Peer Reviewed
See detailEffect of SK channel blockade on the firing of dorsal raphe neurons in anaesthetized rats
Alleva, Livia ULg; Rouchet, Nathalie; Waroux, Olivier ULg et al

Poster (2006, October 17)

K channels are small conductance calcium-activated potassium channels which trigger an outward current generating an afterhyperpolarization (AHP). This AHP follows a single or a train of action potential ... [more ▼]

K channels are small conductance calcium-activated potassium channels which trigger an outward current generating an afterhyperpolarization (AHP). This AHP follows a single or a train of action potential, and therefore is important in the regulation of the firing frequency and/or pattern of many types of neurons. Serotonergic (5-HT) neurons from the raphe nuclei express SK channels and exhibit a significant AHP which can be efficiently blocked in vitro by apamin and N-methyl laudanosine (NML) (Scuvée-Moreau et al, 2004). In the later study, we found that some but not all neurons (50%) had a significantly increase in their firing rate when positive current was injected after SK channel blockade. In order to determine the physiological relevance of these channels in vivo, single unit extracellular recordings were carried out in anesthetized rats and combined with iontophoresis of the specific non-peptidic SK channel blocker, UCL1684. 5-HT neurons were tested for their inhibitory response to locally applied 5-HT and histological analysis confirmed the localization of the recording site. UCL 1684 was used at a concentration of 200 µM. Out of 11 neurons recorded, 6 showed a significant increase in the production of doublets, with no effect on their mean firing rate as compared to the control condition. The other neurons were completely unaffected. These results suggest that the responsiveness of presumed 5-HT neurons to SK channel block is variable. Although the use of 200 µM UCL allow us to be sure of a sufficient SK blockade at the recording site (Waroux et al, 2005), we can not rule out the possibility that SK channels present at the dendritic level were not completely blocked. In conclusion, SK channels in vivo might play a role in controlling the firing pattern of a subgroup of 5-HT neurons. [less ▲]

Detailed reference viewed: 18 (1 ULg)
Full Text
Peer Reviewed
See detailThe KCNQ channel opener retigabine inhibits the activity of mesencephalic dopaminergic systems of the rat
Hansen, H. H.; Ebbesen, C.; Mathiesen, C. et al

in Journal of Pharmacology and Experimental Therapeutics (The) (2006), 318(3), 1006-1019

Homo- and heteromeric complexes of KCNQ channel subunits are the molecular correlate of the M-current, a neuron-specific voltage-dependent K+ current with a well established role in control of neural ... [more ▼]

Homo- and heteromeric complexes of KCNQ channel subunits are the molecular correlate of the M-current, a neuron-specific voltage-dependent K+ current with a well established role in control of neural excitability. We investigated the effect of KCNQ channel modulators on the activity of dopaminergic neurons in vitro and in vivo in the rat ventral mesencephalon. The firing of dopaminergic neurons recorded in mesencephalic slices was robustly inhibited in a concentration-dependent manner by the KCNQ channel opener N-(2-amino-4-(4-fluorobenzylamino)phenyl) carbamic acid ethyl ester ( retigabine). The effect of retigabine persisted in the presence of tetrodotoxin and simultaneous blockade of GABA A receptors, small-conductance calcium-activated K+ ( SK) channels, and hyperpolarization-activated (I-h) channels, and it was potently reversed by the KCNQ channel blocker 4- pyridinylmethyl-9(10H)-anthracenone (XE991), indicating a direct effect on KCNQ channels. Likewise, in vivo single unit recordings from dopaminergic neurons revealed a prominent reduction in spike activity after systemic administration of retigabine. Furthermore, retigabine inhibited dopamine synthesis and c-Fos expression in the striatum under basal conditions. Retigabine completely blocked the excitatory effect of dopamine D-2 auto-receptor antagonists. Again, the in vitro and in vivo effects of retigabine were completely reversed by preadministration of XE991. Dual immunocytochemistry revealed that KCNQ4 is the major KCNQ channel subunit expressed in all dopaminergic neurons in the mesolimbic and nigrostriatal pathways. Collectively, these observations indicate that retigabine negatively modulates dopaminergic neurotransmission, likely originating from stimulation of mesencephalic KCNQ4 channels. [less ▲]

Detailed reference viewed: 111 (59 ULg)
Full Text
Peer Reviewed
See detailIdentification of a pharmacophore of SKCa channel blockers
Dilly, Sébastien ULg; Graulich, Amaury ULg; Farce, Amaury et al

in Journal of Enzyme Inhibition and Medicinal Chemistry (2005), 20(6), 517-523

Small conductance calcium-activated potassium channels ( SK) are widely expressed throughout the central nervous system ( CNS) and the periphery. Three subtypes of SK channels have so far been identified ... [more ▼]

Small conductance calcium-activated potassium channels ( SK) are widely expressed throughout the central nervous system ( CNS) and the periphery. Three subtypes of SK channels have so far been identified in different parts of the brain. Activation of the SK channels by a rise in intracellular calcium leads to the hyperpolarisation of the membrane, reducing cell excitability. Blocking the SK channels might be beneficial in the treatment of depression, Parkinson's disease and cognitive disorders. However, few blockers of SK channels have been characterized. In this study, a pharmacophoric model of SK channels blockers is presented. It is based on a series of nonpeptidic compounds and apamin, a peptidic blocker. To create the pharmacophore model, the conformational space of nonpeptidic blockers was investigated to generate a series of distance constraints applied to a simulated annealing study of apamin. The resulting conformation was superimposed with the nonpeptidic blockers to give a pharmacophore. [less ▲]

Detailed reference viewed: 32 (5 ULg)
Full Text
Peer Reviewed
See detailSK channels control the firing pattern of midbrain dopaminergic neurons in vivo
Waroux, Olivier ULg; Massotte, Laurent ULg; Alleva, Livia ULg et al

in European Journal of Neuroscience (2005), 22(12), 3111-3121

A vast body of experimental in vitro work and modelling studies suggests that the firing pattern and/or rate of a majority of midbrain dopaminergic neurons may be controlled in part by Ca2+-activated K ... [more ▼]

A vast body of experimental in vitro work and modelling studies suggests that the firing pattern and/or rate of a majority of midbrain dopaminergic neurons may be controlled in part by Ca2+-activated K+ channels of the SK type. However, due to the lack of suitable tools, in vivo evidence is lacking. We have taken advantage of the development of the water-soluble, medium potency SK blocker N-methyl-laudanosine (CH3-L) to test this hypothesis in anaesthetized rats. In the lateral ventral tegmental area, CH3-L iontophoresis onto dopaminergic neurons significantly increased the coefficient of variation of their interspike intervals and the percentage of spikes generated in bursts as compared to the control condition. The effect of CH3-L persisted in the presence of a specific GABA(A) antagonist, suggesting a direct effect. It was robust and reversible, and was also observed in the substantia nigra. Control experiments demonstrated that the effect of CH3-L could be entirely ascribed to its blockade of SK channels. On the other hand, the firing pattern of noradrenergic neurons was much less affected by CH3-L. We provide here the first demonstration of a major role of SK channels in the control of the switch between tonic and burst firing of dopaminergic neurons in physiological conditions. This study also suggests a new strategy to develop modulators of the dopaminergic (DA) system, which could be of interest in the treatment of Parkinson's disease, and perhaps other diseases in which DA pathways are dysfunctional. [less ▲]

Detailed reference viewed: 82 (27 ULg)
Full Text
Peer Reviewed
See detailDisrupting the melanin-concentrating hormone receptor 1 in mice leads to cognitive and NMDA response deficit
Grisar, Thierry ULg; Adamantidis, Antoine ULg; Thomas, Elizabeth et al

in Journal of the Neurological Sciences (2005, November 15), 238(Suppl. 1), 288

Detailed reference viewed: 59 (19 ULg)
Full Text
Peer Reviewed
See detailSynthesis and radioligand binding studies of C-5- and C-8-substituted 1-(3,4-dimethoxybenzyl)-2,2-dimethyl-1,2,3,4-tetrahydroisoquinoliniums as SK channel blockers related to N-methyl-laudanosine and N-methyl-noscapine
Graulich, Amaury ULg; Scuvée-Moreau, Jacqueline ULg; Seutin, Vincent ULg et al

in Journal of Medicinal Chemistry (2005), 48(15), 4972-4982

The synthesis and the 125 I-apamin binding studies of original C-5- and C-8-substituted 143,4-dimethoxy-benzyl)-2,2-dimethyl-1,2,3,4-tetrahydroisoquinoliniums and 1-(3,4-dimethoxy-benzyl)-6,6-dimethyl-4,5 ... [more ▼]

The synthesis and the 125 I-apamin binding studies of original C-5- and C-8-substituted 143,4-dimethoxy-benzyl)-2,2-dimethyl-1,2,3,4-tetrahydroisoquinoliniums and 1-(3,4-dimethoxy-benzyl)-6,6-dimethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridiniums were performed in order to find a reversible and selective SK channel blocker structurally related to N-methyl-laudanosine and N-methyl-noscapine. A bulky alkyl substituent in the C-8 position of the tetrahydroisoquinoline produces a clear increase in the affinity for the apamin sensitive binding sites. The presence of an electron-withdrawing group in the C-5 and C-8 positions is not a suitable substitution for the affinity of drugs structurally related to N-methyl-laudanosine. Thiophenic analogues and 8-methoxy derivatives possess a poor affinity for the apamin sensitive binding sites. Electrophysiological studies performed with the most effective compound showed a blockade of the apamin sensitive afterhyperpolarization in rat dopaminergic neurons. [less ▲]

Detailed reference viewed: 69 (42 ULg)
Full Text
See detailRecherche d’un pharmacophore de ligands de canaux SK par Modélisation Moléculaire
Dilly, Sébastien ULg; Graulich, Amaury; Farce, Amaury et al

Conference (2005, January 28)

Parmi les canaux ioniques impliqués dans le contrôle de l'activité neuronale, les canaux potassiques calcium-dépendants de basse conductance, dénommés canaux SK, constituent une cible thérapeutique ... [more ▼]

Parmi les canaux ioniques impliqués dans le contrôle de l'activité neuronale, les canaux potassiques calcium-dépendants de basse conductance, dénommés canaux SK, constituent une cible thérapeutique intéressante. En effet, ils sous-tendent la posthyperpolarisation ("AfterHyperPolarization") de durée moyenne (mAHP) qui limite l'excitabilité de divers types de neurones du système nerveux central (SNC). Leur blocage pourrait être ainsi bénéfique dans le traitement de divers troubles du SNC comme la maladie de Parkinson, la dépression ou encore les désordres cognitifs. Jusqu'à présent, le bloqueur de référence des canaux SK est l’apamine, un octadécapeptide issu du venin d'abeille. En revanche, peu de composés synthétiques avec une affinité proche de celle de l’apamine ont été caractérisés. Dans ce contexte, nous avons développé un modèle pharmacophorique de bloqueurs non-sélectifs qui a révélé, entre autres, une distance optimale de 5.6 Å entre deux charges positives. Ce modèle sera le point de départ de futures investigations dans le développement de nouveaux bloqueurs des canaux SK. [less ▲]

Detailed reference viewed: 22 (2 ULg)
Full Text
See detailLe coenzyme Q10: biochimie, physiopathologie de sa carence et interet potentiel d'une augmentation de ses apports.
Malchair, P.; Van Overmeire, Lionel ULg; Boland, André ULg et al

in Revue Médicale de Liège (2005), 60(1), 45-51

After a brief reminding of the synthesis and function of coenzyme Q10, this article tries to summarise the current state of knowledge about the consequences of its deficiency and about the potential ... [more ▼]

After a brief reminding of the synthesis and function of coenzyme Q10, this article tries to summarise the current state of knowledge about the consequences of its deficiency and about the potential benefits of an increased intake of this coenzyme. We then describe the arguments in favour of such an increase in cardiac diseases and in Parkinson's disease. [less ▲]

Detailed reference viewed: 215 (39 ULg)
Full Text
Peer Reviewed
See detailSynthesis and biological evaluation of N-methyl-laudanosine iodide analogues as potential SK channel blockers.
Graulich, A.; Mercier, Frédéric ULg; Scuvée-Moreau, Jacqueline ULg et al

in Bioorganic & Medicinal Chemistry (2005), 13(4), 1201-9

Neuronal action potentials are followed by an afterhyperpolarisation (AHP), which is mediated by small conductance Ca2+-activated K+ channels (SK channels or KCa2 channels). This AHP plays an important ... [more ▼]

Neuronal action potentials are followed by an afterhyperpolarisation (AHP), which is mediated by small conductance Ca2+-activated K+ channels (SK channels or KCa2 channels). This AHP plays an important role in regulating neuronal activity and agents modulating AHP amplitude could have a potential therapeutic interest. It was previously shown that N-methyl-bicuculline iodide blocks SK channels but its GABA) activity represents a serious drawback. In view of the structural analogy between bicuculline and laudanosine 14, several N-quaternary analogues of the latter were developed. It was shown that N-methyl-laudanosine 15 (NML) and N-ethyl-laudanosine 16 induce a reversible and relatively specific blockade of the apamin sensitive AHP in dopaminergic neurones with mean IC50s of 15, and 47 microM, respectively. Laudanosine 14, N-butyl-17 and N-benzyl-18 derivatives were less potent. In order to find pharmacophore elements, modifications were performed at different positions such as C-1, C-6 and C-7. Intracellular recordings on rat midbrain dopaminergic neurones were made in order to evaluate the putative blockade of SK channels by these molecules. Simplified structures such as tetrahydroisoquinoline derivatives with H or Me at C-1 1-6 presented no significant activity at 300 microM. The presence of a 1-(3,4-dimethoxybenzyl) moiety seems an important feature. Indeed, compound 8 showed a blockade of the AHP of only 33% at 300 microM while compound 13 blocked it by 67%, respectively, at the same concentration. Binding experiments were also performed. Binding affinities for SK channels are in good agreement with electrophysiological data. These results indicate that the presence of a charged nitrogen group is an essential point for the affinity on SK channels. Finally, because of the similar activity of both enantiomers of NML 19 and 20, the interaction site may present a symmetrical configuration. [less ▲]

Detailed reference viewed: 98 (55 ULg)
Full Text
Peer Reviewed
See detailDisrupting the melanin-concentrating hormone receptor 1 in mice leads to cognitive deficits and alterations of NMDA receptor function.
Adamantidis, Antoine ULg; Thomas, Elizabeth; Foidart, Agnès ULg et al

in European Journal of Neuroscience (2005), 21(10), 2837-44

In order to investigate the physiological properties of the melanin-concentrating hormone (MCH) we have generated and used mice from which the MCH receptor 1 gene was deleted (MCHR1(Neo/Neo) mice ... [more ▼]

In order to investigate the physiological properties of the melanin-concentrating hormone (MCH) we have generated and used mice from which the MCH receptor 1 gene was deleted (MCHR1(Neo/Neo) mice). Complementary experimental approaches were used to investigate alterations in the learning and memory processes of our transgenic model. The ability of the knockout strain to carry out the inhibitory passive avoidance test was found to be considerably impaired although no significant differences were observed in anxiety levels. This impaired cognitive property prompted us to explore modifications in N-methyl D-aspartate (NMDA) responses in the hippocampus. Intracellular recordings of CA1 pyramidal neurons in hippocampal slices from the MCHR1(Neo/Neo) mice revealed significantly decreased NMDA responses. Finally, using in situ hybridization we found a 15% reduction in NMDAR1 subunit in the CA1 region. These results show for the first time a possible role for MCH in the control of the function of the NMDA receptor. [less ▲]

Detailed reference viewed: 113 (35 ULg)
Full Text
Peer Reviewed
See detailDopaminergic neurones: much more than dopamine?
Seutin, Vincent ULg

in British Journal of Pharmacology (2005), 146(2), 167-9

Midbrain dopaminergic (DA) neurones sustain important physiological functions such as control of motricity, signalling of the error in prediction of rewards and modulation of emotions and cognition ... [more ▼]

Midbrain dopaminergic (DA) neurones sustain important physiological functions such as control of motricity, signalling of the error in prediction of rewards and modulation of emotions and cognition. Moreover, their degeneration leads to Parkinson's disease and they may be dysfunctional in other pathological states, such as schizophrenia and drug abuse. A subset of DA neurones has been known for many years to contain releasable peptides such as neurotensin and cholecystokinin. However, recent experimental evidence indicates that the phenotype of DA neurones may be much more diverse, since it is suggested that, under certain conditions, they may also release glutamate, cannabinoids and even serotonin. [less ▲]

Detailed reference viewed: 33 (18 ULg)
Full Text
Peer Reviewed
See detailElectrophysiological characterization of the SK channel blockers methyl-laudanosine and methyl-noscapine in cell lines and rat brain slices
Scuvée-Moreau, Jacqueline ULg; Boland, André ULg; Graulich, Amaury ULg et al

in British Journal of Pharmacology (2004), 143(6), 753-764

We have recently shown that the alkaloid methyl-laudanosine blocks SK channel-mediated afterhyperpolarizations (AHPs) in midbrain dopaminergic neurones. However, the relative potency of the compound on ... [more ▼]

We have recently shown that the alkaloid methyl-laudanosine blocks SK channel-mediated afterhyperpolarizations (AHPs) in midbrain dopaminergic neurones. However, the relative potency of the compound on the SK channel subtypes and its ability to block AHPs of other neurones were unknown. Using whole-cell patch-clamp experiments in transfected cell lines, we found that the compound blocks SK1, SK2 and SK3 currents with equal potency: its mean IC(50)s were 1.2, 0.8 and 1.8 microM, respectively. IK currents were unaffected. In rat brain slices, methyl-laudanosine blocked apamin-sensitive AHPs in serotonergic neurones of the dorsal raphe and noradrenergic neurones of the locus coeruleus with IC(50)s of 21 and 19 microM, as compared to 15 microM in dopaminergic neurones. However, at 100 microM, methyl-laudanosine elicited a constant hyperpolarization of serotonergic neurones of about 9 mV, which was inconsistently (i.e. not in a reproducible manner) antagonized by atropine and hence partly due to the activation of muscarinic receptors. While exploring the pharmacology of related compounds, we found that methyl-noscapine also blocked SK channels. In cell lines, methyl-noscapine blocked SK1, SK2 and SK3 currents with mean IC(50)s of 5.9, 5.6 and 3.9 microM, respectively. It also did not block IK currents. Methyl-noscapine was slightly less potent than methyl-laudanosine in blocking AHPs in brain slices, its IC(50)s being 42, 37 and 29 microM in dopaminergic, serotonergic and noradrenergic neurones, respectively. Interestingly, no significant non-SK effects were observed with methyl-noscapine in slices. At a concentration of 300 microM, methyl-noscapine elicited the same changes in excitability in the three neuronal types than did a supramaximal concentration of apamin (300 nM). Methyl-laudanosine and methyl-noscapine produced a rapidly reversible blockade of SK channels as compared with apamin. The difference between the IC(50)s of apamin (0.45 nM) and methyl-laudanosine (1.8 microM) in SK3 cells was essentially due to a major difference in their k(-1) (0.028 s(-1) for apamin and >or=20 s(-1) for methyl-laudanosine). These experiments demonstrate that both methyl-laudanosine and methyl-noscapine are medium potency, quickly dissociating, SK channel blockers with a similar potency on the three SK subtypes. Methyl-noscapine may be superior in terms of specificity for the SK channels. [less ▲]

Detailed reference viewed: 103 (31 ULg)