References of "Samadi, R."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe underlying physical meaning of the νmax - νc relation
Belkacem, K.; Goupil, M. J.; Dupret, Marc-Antoine ULg et al

in Astronomy and Astrophysics (2011), 530

Asteroseismology of stars that exhibit solar-like oscillations are enjoying a growing interest with the wealth of observational results obtained with the CoRoT and Kepler missions. In this framework ... [more ▼]

Asteroseismology of stars that exhibit solar-like oscillations are enjoying a growing interest with the wealth of observational results obtained with the CoRoT and Kepler missions. In this framework, scaling laws between asteroseismic quantities and stellar parameters are becoming essential tools to study a rich variety of stars. However, the physical underlying mechanisms of those scaling laws are still poorly known. Our objective is to provide a theoretical basis for the scaling between the frequency of the maximum in the power spectrum (ν[SUB]max[/SUB]) of solar-like oscillations and the cut-off frequency (ν[SUB]c[/SUB]). Using the SoHO GOLF observations together with theoretical considerations, we first confirm that the maximum of the height in oscillation power spectrum is determined by the so-called plateau of the damping rates. The physical origin of the plateau can be traced to the destabilizing effect of the Lagrangian perturbation of entropy in the upper-most layers, which becomes important when the modal period and the local thermal relaxation time-scale are comparable. Based on this analysis, we then find a linear relation between ν[SUB]max[/SUB] and ν[SUB]c[/SUB], with a coefficient that depends on the ratio of the Mach number of the exciting turbulence to the third power to the mixing-length parameter. [less ▲]

Detailed reference viewed: 11 (2 ULg)
Full Text
Peer Reviewed
See detailCoRoT high-precision photometry of the B0.5 IV star HD 51756
Pápics, P. I.; Briquet, Maryline ULg; Auvergne, M. et al

in Astronomy and Astrophysics (2011), 528

Context. OB stars are important constituents for the ecology of the Universe, and there are only a few studies on their pulsational properties detailed enough to provide important feedback on current ... [more ▼]

Context. OB stars are important constituents for the ecology of the Universe, and there are only a few studies on their pulsational properties detailed enough to provide important feedback on current evolutionary models. <BR /> Aims: Our goal is to analyse and interpret the behaviour present in the CoRoT light curve of the B0.5 IV star HD 51756 observed during the second long run of the space mission and to determine the fundamental stellar parameters from ground-based spectroscopy gathered with the Coralie and Harps instruments after checking for signs of variability and binarity, thus making a step further in mapping the top of the β Cep instability strip. <BR /> Methods: We compared the newly obtained high-resolution spectra with synthetic spectra of late O-type and early B-type stars computed on a grid of stellar parameters. We matched the results with evolutionary tracks to estimate stellar parameters. We used various time series analysis tools to explore the nature of the variations present in the light curve. Additional calculations were carried out based on distance and historical position measurements of the components to impose constraints on the binary orbit. <BR /> Results: We find that HD 51756 is a wide binary with both a slow (vsini ≈ 28 km s[SUP]-1[/SUP]) and a fast (vsini ≈ 170 km s[SUP]-1[/SUP]) early-B rotator whose atmospheric parameters are similar (T[SUB]eff[/SUB] ≈ 30 000 K and log g ≈ 3.75). We are unable to detect pulsation in any of the components, and we interpret the harmonic structure in the frequency spectrum as a sign of rotational modulation, which is compatible with the observed and deduced stellar parameters of both components. <BR /> Conclusions: The non-detection of pulsation modes provides a feedback on the theoretical treatment, given that non-adiabatic computations applied to appropriate stellar models predict the excitation of both pressure and gravity modes for the fundamental parameters of this star. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.Based on data gathered with Coralie installed on the 1.2 m Euler telescope at La Silla, Chile; and Harps installed on the 3.6 m ESO telescope (ESO Large Programme 182.D-0356) at La Silla, Chile.Appendix A is only available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 15 (8 ULg)
Full Text
Peer Reviewed
See detailAn asteroseismic study of the O9V star HD 46202 from CoRoT space-based photometry
Briquet, Maryline ULg; Aerts, C.; Baglin, A. et al

in Astronomy and Astrophysics (2011), 527

The O9V star HD 46202, which is a member of the young open cluster NGC 2244, was observed by the CoRoT satellite in October/November 2008 during a short run of 34 days. From the very high-precision light ... [more ▼]

The O9V star HD 46202, which is a member of the young open cluster NGC 2244, was observed by the CoRoT satellite in October/November 2008 during a short run of 34 days. From the very high-precision light curve, we clearly detect β Cep-like pulsation frequencies with amplitudes of ~0.1 mmag and below. A comparison with stellar models was performed using a χ[SUP]2[/SUP] as a measure for the goodness-of-fit between the observed and theoretically computed frequencies. The physical parameters of our best-fitting models are compatible with the ones deduced spectroscopically. A core overshooting parameter α[SUB]ov[/SUB] = 0.10 ± 0.05 pressure scale height is required. None of the observed frequencies are theoretically excited with the input physics used in our study. More theoretical work is thus needed to overcome this shortcoming in how we understand the excitation mechanism of pulsation modes in such a massive star. A similar excitation problem has also been encountered for certain pulsation modes in β Cep stars recently modelled asteroseismically. The CoRoT space mission was developed and is operated by the French space agency CNES, with the participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. [less ▲]

Detailed reference viewed: 15 (8 ULg)
Full Text
Peer Reviewed
See detailPlaskett's star: analysis of the CoRoT photometric data
Mahy, Laurent ULg; Gosset, Eric ULg; Baudin, F. et al

in Astronomy and Astrophysics (2011), 525

Context. The second short run (SRa02) of the CoRoT space mission for asteroseismology was partly devoted to stars belonging to the Mon OB2 association. An intense monitoring has been performed on Plaskett ... [more ▼]

Context. The second short run (SRa02) of the CoRoT space mission for asteroseismology was partly devoted to stars belonging to the Mon OB2 association. An intense monitoring has been performed on Plaskett's star (HD 47129) and the unprecedented quality of the light curve allows us to shed new light on this very massive, non-eclipsing binary system. <BR /> Aims: We particularly aimed at detecting periodic variability that might be associated with pulsations or interactions between both components. We also searched for variations related to the orbital cycle that could help to constrain the inclination and the morphology of the binary system. <BR /> Methods: We applied an iterative Fourier-based prewhitening and a multiperiodic fitting procedure to analyse the time series and extract the frequencies of variations from the CoRoT light curve. We describe the noise properties to tentatively define an appropriate significance criterion and, in consequence, to only point out the peaks at a certain significance level. We also detect the variations related to the orbital motion and study them with the NIGHTFALL programme. <BR /> Results: The periodogram computed from Plaskett's star CoRoT light curve mainly exhibits a majority of peaks at low frequencies. Among these peaks, we highlight a list of 43 values, notably including two different sets of harmonic frequencies whose fundamental peaks are located at about 0.07 and 0.82 d[SUP]-1[/SUP]. The former represents the orbital frequency of the binary system, whilst the latter could probably be associated with non-radial pulsations. The study of the 0.07 d[SUP]-1[/SUP] variations reveals a hot spot most probably situated on the primary star and facing the secondary. <BR /> Conclusions: The investigation of this unique dataset constitutes a further step in the understanding of Plaskett's star. These results provide a first basis for future seismic modelling and put forward the probable existence of non-radial pulsations in Plaskett's star. Moreover, the fit of the orbital variations confirms the problem of the distance of this system which was already mentioned in previous works. A hot region between both components renders the determination of the inclination ambiguous. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany and Spain.Table 2 is only available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 23 (5 ULg)
Full Text
Peer Reviewed
See detailAmplitudes and lifetimes of solar-like oscillations observed by CoRoT. Red-giant versus main-sequence stars
Baudin, F.; Barban, C.; Belkacem, K. et al

in Astronomy and Astrophysics (2011), 529

Context. The advent of space-borne missions such as CoRoT or Kepler providing photometric data has brought new possibilities for asteroseismology across the H-R diagram. Solar-like oscillations are now ... [more ▼]

Context. The advent of space-borne missions such as CoRoT or Kepler providing photometric data has brought new possibilities for asteroseismology across the H-R diagram. Solar-like oscillations are now observed in many stars, including red giants and main-sequence stars. Aims: Based on several hundred identified pulsating red giants, we aim to characterize their oscillation amplitudes and widths. These observables are compared with those of main-sequence stars in order to test trends and scaling laws for these parameters for main-sequence stars and red giants. Methods: An automated fitting procedure is used to analyze several hundred Fourier spectra. For each star, a modeled spectrum is fitted to the observed oscillation spectrum, and mode parameters are derived. Results: Amplitudes and widths of red-giant solar-like oscillations are estimated for several hundred modes of oscillation. Amplitudes are relatively high (several hundred ppm) and widths relatively small (very few tenths of a μHz). Conclusions: Widths measured in main-sequence stars show a different variation with the effective temperature from red giants. A single scaling law is derived for mode amplitudes of red giants and main-sequence stars versus their luminosity to mass ratio. However, our results suggest that two regimes may also be compatible with the observations. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailAsteroseismology of OB stars with CoRoT
Degroote, P.; Aerts, C.; Samadi, R. et al

in Astronomische Nachrichten (2010), 331

The CoRoT satellite is revolutionizing the photometric study of massive O-type and B-type stars. During its long runs, CoRoT observed the entire main sequence B star domain, from typical hot β Cep stars ... [more ▼]

The CoRoT satellite is revolutionizing the photometric study of massive O-type and B-type stars. During its long runs, CoRoT observed the entire main sequence B star domain, from typical hot β Cep stars, via cooler hybrid p- and g-mode pulsators to the SPB stars near the edge of the instability strip. CoRoT lowers the sensitivity barrier from the typical mmag-precision reached from the ground, to the μmag-level reached from space. Within the wealth of detected and identified pulsation modes, relations have been found in the form of multiplets, combination of frequencies, and frequency- and period spacings. This wealth of observational evidence is finally providing strong constraints to test current models of the internal structure and pulsations of hot stars. Aside from the expected opacity driven modes with infinite lifetime, other unexpected types of variability are detected in massive stars, such as modes of stochastic nature. The simultaneous observation of all these light curve characteristics implies a challenge for both observational asteroseismology and stellar modelling. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. [less ▲]

Detailed reference viewed: 4 (1 ULg)
Full Text
Peer Reviewed
See detailDetection of frequency spacings in the young O-type binary HD 46149 from CoRoT photometry
Degroote, P.; Briquet, Maryline ULg; Auvergne, M. et al

in Astronomy and Astrophysics (2010), 519

<BR /> Aims: Using the CoRoT space based photometry of the O-type binary HD 46149, stellar atmospheric effects related to rotation can be separated from pulsations, because they leave distinct signatures ... [more ▼]

<BR /> Aims: Using the CoRoT space based photometry of the O-type binary HD 46149, stellar atmospheric effects related to rotation can be separated from pulsations, because they leave distinct signatures in the light curve. This offers the possibility of characterising and exploiting any pulsations seismologically. <BR /> Methods: Combining high-quality space based photometry, multi-wavelength photometry, spectroscopy and constraints imposed by binarity and cluster membership, the detected pulsations in HD 46149 are analyzed and compared with those for a grid of stellar evolutionary models in a proof-of-concept approach. <BR /> Results: We present evidence of solar-like oscillations in a massive O-type star, and show that the observed frequency range and spacings are compatible with theoretical predictions. Thus, we unlock and confirm the strong potential of this seismically unexplored region in the HR diagram. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.Based on observations made with the ESO telescopes at La Silla Observatory under the ESO Large Programme LP182.D-0356.Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. [less ▲]

Detailed reference viewed: 25 (6 ULg)
Full Text
Peer Reviewed
See detailStochastic excitation of gravity modes in massive main-sequence stars
Samadi, R.; Belkacem, Kevin ULg; Goupil, M. J. et al

in Astrophysics & Space Science (2010), 328

We investigate the possibility that gravity modes can be stochastically excited by turbulent convection in massive main-sequence (MS) stars. We build stellar models of MS stars with masses M=10 M [SUB]ȯ ... [more ▼]

We investigate the possibility that gravity modes can be stochastically excited by turbulent convection in massive main-sequence (MS) stars. We build stellar models of MS stars with masses M=10 M [SUB]ȯ[/SUB],15 M [SUB]ȯ[/SUB], and 20 M [SUB]ȯ[/SUB]. For each model, we then compute the power supplied to the modes by turbulent eddies in the convective core (CC) and the outer convective zones (OCZ). We found that, for asymptotic gravity modes, the major part of the driving occurs within the outer iron convective zone, while the excitation of low n order modes mainly occurs within the CC. We compute the mode lifetimes and deduce the expected mode amplitudes. We finally discuss the possibility of detecting such stochastically-excited gravity modes with the CoRoT space-based mission. [less ▲]

Detailed reference viewed: 15 (4 ULg)
Full Text
Peer Reviewed
See detailPeriodic mass-loss episodes due to an oscillation mode with variable amplitude in the hot supergiant HD 50064
Aerts, C.; Lefever, K.; Baglin, A. et al

in Astronomy and Astrophysics (2010), 513

<BR /> Aims: We aim to interpret the photometric and spectroscopic variability of the luminous blue variable supergiant HD 50064 (V = 8.21). <BR /> Methods: CoRoT space photometry and follow-up high ... [more ▼]

<BR /> Aims: We aim to interpret the photometric and spectroscopic variability of the luminous blue variable supergiant HD 50064 (V = 8.21). <BR /> Methods: CoRoT space photometry and follow-up high-resolution spectroscopy with a time base of 137 d and 169 d, respectively, was gathered, analysed, and interpreted using standard time series analysis and light curve modelling methods, as well as spectral line diagnostics. <BR /> Results: The space photometry reveals one period of 37 d, which undergoes a sudden amplitude change with a factor 1.6. The pulsation period is confirmed in the spectroscopy, which additionally reveals metal line radial velocity values differing by 30 km s[SUP]-1[/SUP] depending on the spectral line and on the epoch. We estimate T[SUB]eff[/SUB] 13 500 K, log g 1.5 from the equivalent width of Si lines. The Balmer lines reveal that the star undergoes episodes of changing mass loss on a time scale similar to the changes in the photometric and spectroscopic variability, with an average value of log dot{M} â -5 (in M_ȯ yr[SUP]-1[/SUP]). We tentatively interpret the 37 d period as the result of a strange mode oscillation. Based on high-resolution spectroscopy assembled with the CORALIE spectrograph attached to the 1.2 m Euler telescope at La Silla, Chile and on CoRoT space-based photometry. The CoRoT space mission was developed and is operated by the French space agency CNES, with the participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.Postdoctoral Fellow of the Fund for Scientific Research of Flanders (FWO), Belgium. [less ▲]

Detailed reference viewed: 10 (3 ULg)
Full Text
Peer Reviewed
See detailNon-radial oscillations in the red giant HR 7349 measured by CoRoT
Carrier, F.; De Ridder, J.; Baudin, F. et al

in Astronomy and Astrophysics (2010), 509

Context. Convection in red giant stars excites resonant acoustic waves whose frequencies depend on the sound speed inside the star, which in turn depends on the properties of the stellar interior ... [more ▼]

Context. Convection in red giant stars excites resonant acoustic waves whose frequencies depend on the sound speed inside the star, which in turn depends on the properties of the stellar interior. Therefore, asteroseismology is the most robust available method for probing the internal structure of red giant stars. <BR /> Aims: Solar-like oscillations in the red giant HR 7349 are investigated. <BR /> Methods: Our study is based on a time series of 380 760 photometric measurements spread over 5 months obtained with the CoRoT satellite. Mode parameters were estimated using maximum likelihood estimation of the power spectrum. <BR /> Results: The power spectrum of the high-precision time series clearly exhibits several identifiable peaks between 19 and 40 μHz showing regularity with a mean large and small spacing of Πν = 3.47 ± 0.12 μHz and δν[SUB]02[/SUB] = 0.65 ± 0.10 μHz. Nineteen individual modes are identified with amplitudes in the range from 35 to 115 ppm. The mode damping time is estimated to be 14.7[SUP]+4.7[/SUP][SUB]-2.9[/SUB] days. The CoRoT space mission has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany and Spain. [less ▲]

Detailed reference viewed: 54 (30 ULg)
Full Text
Peer Reviewed
See detailThe CoRoT target HD 49933 . II. Comparison of theoretical mode amplitudes with observations
Samadi, R.; Ludwig, H*-G; Belkacem, Kevin ULg et al

in Astronomy and Astrophysics (2010), 509

Context. The seismic data obtained by CoRoT for the star HD 49933 enable us for the first time to measure directly the amplitudes and linewidths of solar-like oscillations for a star other than the Sun ... [more ▼]

Context. The seismic data obtained by CoRoT for the star HD 49933 enable us for the first time to measure directly the amplitudes and linewidths of solar-like oscillations for a star other than the Sun. From those measurements it is possible, as was done for the Sun, to constrain models of the excitation of acoustic modes by turbulent convection. <BR /> Aims: We compare a stochastic excitation model described in Paper I with the asteroseismology data for HD 49933, a star that is rather metal poor and significantly hotter than the Sun. <BR /> Methods: Using the seismic determinations of the mode linewidths detected by CoRoT for HD 49933 and the theoretical mode excitation rates computed in Paper I for the specific case of HD 49933, we derive the expected surface velocity amplitudes of the acoustic modes detected in HD 49933. Using a calibrated quasi-adiabatic approximation relating the mode amplitudes in intensity to those in velocity, we derive the expected values of the mode amplitude in intensity. <BR /> Results: Except at rather high frequency, our amplitude calculations are within 1-Ï error bars of the mode surface velocity spectrum derived with the HARPS spectrograph. The same is found with respect to the mode amplitudes in intensity derived for HD 49933 from the CoRoT data. On the other hand, at high frequency (ν ⪠1.9 mHz), our calculations depart significantly from the CoRoT and HARPS measurements. We show that assuming a solar metal abundance rather than the actual metal abundance of the star would result in a larger discrepancy with the seismic data. Furthermore, we present calculations which assume the â newâ solar chemical mixture to be in better agreement with the seismic data than those that assumed the â oldâ solar chemical mixture. <BR /> Conclusions: These results validate in the case of a star significantly hotter than the Sun and α Cen A the main assumptions in the model of stochastic excitation. However, the discrepancies seen at high frequency highlight some deficiencies of the modelling, whose origin remains to be understood. We also show that it is important to take the surface metal abundance of the solar-like pulsators into account. The CoRoT space mission, launched on December 27 2006, has been developped and is operated by CNES, with the contribution of Austria, Belgium, Brasil, ESA, Germany and Spain. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailThe CoRoT target HD 49933 . I. Effect of the metal abundance on the mode excitation rates
Samadi, R.; Ludwig, H*-G; Belkacem, Kevin ULg et al

in Astronomy and Astrophysics (2010), 509

Context. Solar-like oscillations are stochastically excited by turbulent convection at the surface layers of the stars. <BR /> Aims: We study the role of the surface metal abundance on the efficiency of ... [more ▼]

Context. Solar-like oscillations are stochastically excited by turbulent convection at the surface layers of the stars. <BR /> Aims: We study the role of the surface metal abundance on the efficiency of the stochastic driving in the case of the CoRoT target HD 49933. <BR /> Methods: We compute two 3D hydrodynamical simulations representative - in effective temperature and gravity - of the surface layers of the CoRoT target HD 49933, a star that is rather metal poor and significantly hotter than the Sun. One 3D simulation has a solar metal abundance, and the other has a surface iron-to-hydrogen, [Fe/H], abundance ten times smaller. For each 3D simulation we match an associated global 1D model, and we compute the associated acoustic modes using a theoretical model of stochastic excitation validated in the case of the Sun and α Cen A. <BR /> Results: The rate at which energy is supplied per unit time into the acoustic modes associated with the 3D simulation with [Fe/H] = -1 is found to be about three times smaller than those associated with the 3D simulation with [Fe/H] = 0. As shown here, these differences are related to the fact that low metallicity implies surface layers with a higher mean density. In turn, a higher mean density favors smaller convective velocities and hence less efficient driving of the acoustic modes. <BR /> Conclusions: Our result shows the importance of taking the surface metal abundance into account in the modeling of the mode driving by turbulent convection. A comparison with observational data is presented in a companion paper using seismic data obtained for the CoRoT target HD 49933. The CoRoT space mission, launched on December 27, 2006, has been developped and is operated by CNES, with the contribution of Austria, Belgium, Brasil, ESA, Germany and Spain. [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailHD 174884: a strongly eccentric, short-period early-type binary system discovered by CoRoT
Maceroni, C.; Montalban Iglesias, Josefa ULg; Michel, E. et al

in Astronomy and Astrophysics (2009), 508

Accurate photometric CoRoT space observations of a secondary seismological target, HD 174884, led to the discovery that this star is an astrophysically important double-lined eclipsing spectroscopic ... [more ▼]

Accurate photometric CoRoT space observations of a secondary seismological target, HD 174884, led to the discovery that this star is an astrophysically important double-lined eclipsing spectroscopic binary in an eccentric orbit (eË 0.3), unusual for its short 3.65705° orbital period. The high eccentricity, coupled with the orientation of the binary orbit in space, explains the very unusual observed light curve with strongly unequal primary and secondary eclipses having the depth ratio of 1-to-100 in the CoRoT â seismoâ passband. Without the high accuracy of the CoRoT photometry, the secondary eclipse, 1.5 mmag deep, would have gone unnoticed. A spectroscopic follow-up program provided 45 high dispersion spectra. The analysis of the CoRoT light curve was performed with an adapted version of PHOEBE that supports CoRoT passbands. The final solution was obtained by a simultaneous fitting of the light and the radial velocity curves. Individual star spectra were obtained by spectrum disentangling. The uncertainties of the fit were achieved by bootstrap resampling and the solution uniqueness was tested by heuristic scanning. The results provide a consistent picture of the system composed of two late B stars. The Fourier analysis of the light curve fit residuals yields two components, with orbital frequency multiples and an amplitude of ~0.1 mmag, which are tentatively interpreted as tidally induced pulsations. An extensive comparison with theoretical models is carried out by means of the Levenberg-Marquardt minimization technique, and the discrepancy between the models and the derived parameters is discussed. The best fitting models yield a young system age of 125 million years which is consistent with the eccentric orbit and synchronous component rotation at periastron. Based on photometry collected by the CoRoT space mission and spectroscopy obtained with the CORALIE spectrograph attached to the 1.2 m Euler telescope at ESO, La Silla, Chile. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programs, Austria, Belgium, Brazil, Germany and Spain. Postdoctoral fellow of the Fund for Scientific Research of Flanders (FWO). [less ▲]

Detailed reference viewed: 20 (5 ULg)
Full Text
Peer Reviewed
See detailCoRoT's view of newly discovered B-star pulsators: results for 358 candidate B pulsators from the initial run's exoplanet field data
Degroote, P.; Aerts, C.; Ollivier, M. et al

in Astronomy and Astrophysics (2009), 506

Context: We search for new variable B-type pulsators in the CoRoT data assembled primarily for planet detection, as part of CoRoT's additional programme. <BR />Aims: We aim to explore the properties of ... [more ▼]

Context: We search for new variable B-type pulsators in the CoRoT data assembled primarily for planet detection, as part of CoRoT's additional programme. <BR />Aims: We aim to explore the properties of newly discovered B-type pulsators from the uninterrupted CoRoT space-based photometry and to compare them with known members of the β Cep and slowly pulsating B star (SPB) classes. <BR />Methods: We developed automated data analysis tools that include algorithms for jump correction, light-curve detrending, frequency detection, frequency combination search, and for frequency and period spacing searches. <BR />Results: Besides numerous new, classical, slowly pulsating B stars, we find evidence for a new class of low-amplitude B-type pulsators between the SPB and δ Sct instability strips, with a very broad range of frequencies and low amplitudes, as well as several slowly pulsating B stars with residual excess power at frequencies typically a factor three above their expected g-mode frequencies. <BR />Conclusions: The frequency data we obtained for numerous new B-type pulsators represent an appropriate starting point for further theoretical analyses of these stars, once their effective temperature, gravity, rotation velocity, and abundances will be derived spectroscopically in the framework of an ongoing FLAMES survey at the VLT. The CoRoT space mission was developed and is operated by the French space agency CNES, with the participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. All frequency tables, including the identification of combination frequencies, are only available as online material. Frequency Tables are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/506/471 Bâtiment 121, 91405, Orsay Cedex, France. Postdoctoral Researcher, Fonds de la Recherche Scientifique - FNRS, Belgium. Postdoctoral Fellow of the Fund for Scientific Research, Flanders. [less ▲]

Detailed reference viewed: 24 (7 ULg)
Full Text
Peer Reviewed
See detailOn posterior probability and significance level: application to the power spectrum of HD 49 933 observed by CoRoT
Appourchaux, T.; Samadi, R.; Dupret, Marc-Antoine ULg

in Astronomy and Astrophysics (2009), 506

Context: The CoRoT mission provides asteroseismic data of very high quality allowing one to adopt new statistical approaches for mode detection in power spectra, especially with respect to testing the ... [more ▼]

Context: The CoRoT mission provides asteroseismic data of very high quality allowing one to adopt new statistical approaches for mode detection in power spectra, especially with respect to testing the null hypothesis (H{0}, which assumes that what is observed is pure noise). Aims: We emphasize that the significance level when rejecting the null hypothesis can lead to the incorrect conclusion that the H{0} hypothesis is unlikely to occur at that significance level. We demonstrate that the significance level is unrelated to the posterior probability of H{0}, given the observed data set, and that this posterior probability is very much higher than implied by the significance level. Methods: We use Bayes theorem to derive the posterior probability of that H{0} is true assuming an alternative hypothesis H{1} that a mode is present, taking some prior for the mode height, mode amplitude and linewidth. Results: We compute the posterior probability of H{0} for the p modes detected on HD 49 933 by CoRoT. Conclusions: We conclude that the posterior probability of H{0} provide a much more conservative quantification of the mode detection than the significance level. This framework can be applied to any similar stellar power spectra obtained to complete asteroseismology. The CoRoT space mission, launched on 2006 December 27, was developed and is operated by the CNES, with participation of the Science Programs of ESA, ESA's RSSD, Austria, Belgium, Brazil, Germany and Spain. [less ▲]

Detailed reference viewed: 8 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius
Leger, A.; Rouan, D.; Schneider, J. et al

in Astronomy and Astrophysics (2009), 506

We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as due to the presence of a ... [more ▼]

We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as due to the presence of a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We use CoRoT color information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy and preliminary results from Radial Velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star are derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. We examine carefully all conceivable cases of false positives, and all tests performed support the planetary hypothesis. Blends with separation larger than 0.40 arcsec or triple systems are almost excluded with a 8 10-4 risk left. We conclude that, as far as we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 10-5 day and a radius of Rp = 1.68 +/- 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. CoRoT-7b is very likely the first Super-Earth with a measured radius. [less ▲]

Detailed reference viewed: 36 (5 ULg)
Full Text
Peer Reviewed
See detailSpace observations of B stars with CoRoT
Degroote, P.; Miglio, Andrea ULg; Debosscher, J. et al

in Communications in Asteroseismology (2009), 158

We present the preliminary results of the exploration of pulsating B stars observed with the CoRoT space mission. The previously known group of Slowly Pulsating B stars gains a substantial amount of new ... [more ▼]

We present the preliminary results of the exploration of pulsating B stars observed with the CoRoT space mission. The previously known group of Slowly Pulsating B stars gains a substantial amount of new candidates, offering the opportunity to test stellar models beyond individual cases. Besides these well-defined stars, the analysis of other B star candidate pulsators hints towards the presence of different variability behaviour, co-existing in the same space in terms of the timescale of the variations and location in the (Teff, logg) diagram. [less ▲]

Detailed reference viewed: 27 (9 ULg)
Full Text
Peer Reviewed
See detailTheoretical amplitudes of solar-like oscillations in classical pulsators
Belkacem, Kevin ULg; Goupil, M. J.; Dupret, Marc-Antoine ULg et al

in Communications in Asteroseismology (2009), 158

Seismology based on oscillation mode amplitudes allows a different probing of turbulent convection zones than usual seismology based on frequencies as shown, for instance, by Belkacem et al. (2006) for ... [more ▼]

Seismology based on oscillation mode amplitudes allows a different probing of turbulent convection zones than usual seismology based on frequencies as shown, for instance, by Belkacem et al. (2006) for the Sun. Going a step further, we now turn to investigations of stochastic excitation of solar-like oscillations in superficial convective layers as well as in convective cores of stars more massive than the Sun. Issues are the frequency domain where solar-like oscillations can be excited, the expected magnitude of these oscillation amplitudes, and whether these amplitudes are detectable with the CoRoT mission. This is an important task since the detection of solar-like oscillations will provide strong seismic constraints on the dynamical properties of the convective layers. The detection of solar-like oscillations in stars such as beta Cephei or SPB stars will also help to determine their fundamental stellar parameters. [less ▲]

Detailed reference viewed: 14 (2 ULg)
Full Text
Peer Reviewed
See detailSolar-Like Oscillations in a Massive Star
Belkacem, K.; Samadi, R.; Goupil, M.-J. et al

in Science (2009), 324

Seismology of stars provides insight into the physical mechanisms taking place in their interior, with modes of oscillation probing different layers. Low-amplitude acoustic oscillations excited by ... [more ▼]

Seismology of stars provides insight into the physical mechanisms taking place in their interior, with modes of oscillation probing different layers. Low-amplitude acoustic oscillations excited by turbulent convection were detected four decades ago in the Sun and more recently in low-mass main-sequence stars. Using data gathered by the Convection Rotation and Planetary Transits mission, we report here on the detection of solar-like oscillations in a massive star, V1449 Aql, which is a known large-amplitude (beta Cephei) pulsator. [less ▲]

Detailed reference viewed: 28 (14 ULg)
See detailCoRot B star frequency analysis (Degroote+, 2009)
Degroote, P.; Aerts, C.; Ollivier, M. et al

Computer development (2009)

Results of frequency analyses for 352 candidate B pulsators (candidate Be stars are ommitted) from CoRoT's initial run. For each star, the following information is given: frequency number, amplitude ... [more ▼]

Results of frequency analyses for 352 candidate B pulsators (candidate Be stars are ommitted) from CoRoT's initial run. For each star, the following information is given: frequency number, amplitude + error, frequency value + error, phase + error. The error values for large amplitude frequencies can be slightly underestimated, as they are not corrected for correlation effects. Also given are comments about every frequency: if they are expected to be due to instrumental effects (e.g. orbit of the satellite), if they are harmonics or higher order combinations of previously identified frequencies. (2 data files). [less ▲]

Detailed reference viewed: 16 (7 ULg)