References of "Riva, Raphaël"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThermoreversibly crosslinked poly(ε-caprolactone) as recyclable shape-memory polymer network
Defize, Thomas ULg; Riva, Raphaël ULg; Raquez, Jean-Marie et al

in Macromolecular Rapid Communications (2011), 32(16), 1264-1269

A new concept to build shape memory polymers (SMP) combining outstanding fixity and recovery ratios (both above 99% after only one training cycle) typical of chemically crosslinked SMPs with ... [more ▼]

A new concept to build shape memory polymers (SMP) combining outstanding fixity and recovery ratios (both above 99% after only one training cycle) typical of chemically crosslinked SMPs with reprocessability restricted to physically crosslinked SMPs is demonstrated by covalently bonding, through thermoreversible Diels–Alder (DA) adducts, star-shaped poly(epsilon-caprolactones) (PCL) end-functionalized by furan and maleimide moieties. A PCL network is easily prepared by melt-blending complementary end-functional star polymers in retro DA regime, then by curing at lower temperature to favour the DA cycloaddition. Such covalent network can be reprocessed when heated again at the retro DA temperature. The resulting SMP shows still excellent shape memory properties attesting for its good recyclability. [less ▲]

Detailed reference viewed: 85 (36 ULg)
Full Text
Peer Reviewed
See detailNovel drug delivery sytem of siRNA based on chitosan, pegylated chitosan and polyethyleneimine
Ragelle, Héloïse; Vandermeulen, Gaëlle; Riva, Raphaël ULg et al

in Human Gene Therapy (2011, June 06), 22

Detailed reference viewed: 48 (2 ULg)
Full Text
Peer Reviewed
See detailPreparation of pH-sensitive star-shaped aliphatic polyesters as precursors of polymersomes
Riva, Raphaël ULg; Lazzari, Wenda; Billiet, Leen et al

in Journal of Polymer Science. Part A, Polymer Chemistry (2011), 49(7), 1552-1563

The synthesis of a new pH-sensitive amphiphilic A2B mikto-arm star-shaped aliphatic copolyester (with A = PCL and B = tertiary amine-bearing PCL) with two hydrophobic arms and one hydrophilic arm when ... [more ▼]

The synthesis of a new pH-sensitive amphiphilic A2B mikto-arm star-shaped aliphatic copolyester (with A = PCL and B = tertiary amine-bearing PCL) with two hydrophobic arms and one hydrophilic arm when protonated at pH = 5.5. The copper mediated azide-alkyne cycloaddition was used for the synthesis of the star copolyester and to impart the pH sensitivity to the hydrophilic arm by grafting of tertiary amine groups onto azide bearing PCL chain. The formation of polymersomes in water at pH 5 was assessed by DLS and TEM analyses. [less ▲]

Detailed reference viewed: 30 (13 ULg)
Full Text
Peer Reviewed
See detailIn vivo biocompatibility of three potential intraperitoneal implants
Defrère, Sylvie; Mestdagt, Mélanie ULg; Riva, Raphaël ULg et al

in Macromolecular Bioscience (2011), 11(10), 1335-45

The intraperitoneal biocompatibility of PDMS, polyHEMA and pEVA was investigated in rats, rabbits and rhesus monkeys. No inflammation was evidenced by hematological analyses and measurement of ... [more ▼]

The intraperitoneal biocompatibility of PDMS, polyHEMA and pEVA was investigated in rats, rabbits and rhesus monkeys. No inflammation was evidenced by hematological analyses and measurement of inflammatory markers throughout the experiment and by post-mortem examination of the pelvic cavity. After 3 or 6 months, histological analysis revealed fibrous tissue encapsulating PDMS and PEVA implants in all species and polyHEMA implants in rabbits and monkeys. Calcium deposits were observed inside polyHEMA implants. The intraperitoneal biocompatibility of all 3 polymers makes them suitable for the design of drug delivery systems, which may be of great interest for pathologies confined to the pelvic cavity. [less ▲]

Detailed reference viewed: 74 (34 ULg)
Full Text
See detailChitosan and chitosan derivatives in drug delivery and tissue engineering
Riva, Raphaël ULg; Raguelle, Héloïse; des Rieux, Anne et al

in Jayakumar, Rangasamy; Prabaharan, M.; Muzzarelli, Ricardo A. A. (Eds.) Chitosan for Biomaterials II (2011)

Chitosan is a nontoxic, biodegradable, and biocompatible polysaccharide of β(1-4)-linked d-glucosamine and N-acetyl-d-glucosamine. This derivative of natural chitin presents remarkable properties that ... [more ▼]

Chitosan is a nontoxic, biodegradable, and biocompatible polysaccharide of β(1-4)-linked d-glucosamine and N-acetyl-d-glucosamine. This derivative of natural chitin presents remarkable properties that have paved the way for the introduction of chitosan in the biomedical and pharmaceutical fields. Nevertheless, the properties of chitosan, such as its poor solubility in water or in organic solvents, can limit its utilization for a specific application. An elegant way to improve or to impart new properties to chitosan is the chemical modification of the chain, generally by grafting of functional groups, without modification of the initial skeleton in order to conserve the original properties. The functionalization is carried out on the primary amine group, generally by quaternization, or on the hydroxyl group. This review aims to provide an overview of chitosan and chitosan derivatives used for drug delivery, with a special emphasis on chemical modifications of chitosan to achieve specific biomedical purpose. The synthesis of the main chitosan derivatives will be reviewed. The applications of chitosan and these chitosan derivatives will be illustrated. [less ▲]

Detailed reference viewed: 172 (11 ULg)
Full Text
See detailContribution of "click chemistry" to the macromolecular engineering of aliphatic polyesters
Riva, Raphaël ULg; Schmeits, Stephanie ULg; Croisier, Florence ULg et al

Poster (2010, July 13)

In this work, click chemistry was sucessfully applied to the chemical modification of aliphatic polyesters with the purpose to tailor their physical properties. The developped strategy was then applied to ... [more ▼]

In this work, click chemistry was sucessfully applied to the chemical modification of aliphatic polyesters with the purpose to tailor their physical properties. The developped strategy was then applied to the synthesis of materials, such as smart partially degradable hydrogels or antibacterial polyesters. Last, the synthesis of amphiphilic star-shaped copolyester was investigated. [less ▲]

Detailed reference viewed: 82 (9 ULg)
See detailSynthesis of novel amphiphilic mikto-arm star-shaped copolymers
Riva, Raphaël ULg; Lazarri, Wenda; Billiet, Leen et al

Poster (2009, December 14)

Detailed reference viewed: 38 (7 ULg)
Full Text
Peer Reviewed
See detailControlled Synthesis of AB2 amphiphilic triarm star-shaped block copolymers by ring-opening polymerization
Petrova, Svetla; Riva, Raphaël ULg; Jérôme, Christine ULg et al

in European Polymer Journal (2009), 45(12), 3442-3450

This paper describes the synthesis of a novel amphiphilic AB2 triarm star-shaped copolymer with A = non-toxic and biocompatible hydrophilic poly(ethylene oxide) (PEO) and B = biodegradable and hydrophobic ... [more ▼]

This paper describes the synthesis of a novel amphiphilic AB2 triarm star-shaped copolymer with A = non-toxic and biocompatible hydrophilic poly(ethylene oxide) (PEO) and B = biodegradable and hydrophobic poly(ε-caprolactone) (PCL). A series of AB2 triarm star-shaped copolymers with different molecular weights for the PCL block were successfully synthesized by a three-step procedure. α-methoxy-ω-epoxy-poly(ethylene oxide) (PEO-epoxide) was first synthesized by the nucleophilic substitution of α-methoxy-ω-hydroxy-poly(ethylene oxide) (MPEO) on epichlorohydrin. In a second step, the α-methoxy-ω,ω’-dihydroxy-poly(ethylene oxide) (PEO(OH)2) macroinitiator was prepared by the selective hydrolysis of the ω-epoxy end-group of the PEO-epoxide chain. Finally, PEO(OH)2 was used as a macroinitiator for the ring-opening polymerization (ROP) of ε-caprolactone (εCL) catalyzed by tin octoaote (Sn(Oct)2). PEO-epoxide, PEO(OH)2 and the AB2 triarm star-shaped copolymers were assessed by 1H NMR spectroscopy, size exclusion chromatography (SEC) and MALDI-TOF. The behavior of the AB2 triarm star-shaped copolymer in aqueous solution was studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM). [less ▲]

Detailed reference viewed: 120 (22 ULg)
Full Text
See detailFunctionlization and grafting of polylactide by click chemistry
Riva, Raphaël ULg; Croisier, Florence ULg; Jérôme, Christine ULg et al

Conference (2009, November 19)

Detailed reference viewed: 69 (14 ULg)
Full Text
Peer Reviewed
See detailFirst example of “click” copper(I) catalyzed azide-alkyne cycloaddition in supercritical carbon dioxide: Application to the functionalization of aliphatic polyesters
Grignard, Bruno ULg; Schmeits, Stephanie ULg; Riva, Raphaël ULg et al

in Green Chemistry (2009), 11

The modification of aliphatic polyesters by the copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) was successfully implemented in supercritical carbon dioxide (scCO2). Due to the remarkable ... [more ▼]

The modification of aliphatic polyesters by the copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) was successfully implemented in supercritical carbon dioxide (scCO2). Due to the remarkable properties of scCO2, the CuAAC reaction turned out to be quantitative even though the aliphatic polyesters used in this work were insoluble in scCO2. Interestingly enough, the conditions were mild enough to prevent polymer degradation from occurring and finally, efficient removal of the catalyst (>96%) was achieved by scCO2 extraction. [less ▲]

Detailed reference viewed: 113 (35 ULg)
Full Text
See detailSynthesis of functionalized polyesters by the "click" copper-catalyzed alkyne-azide cycloaddition
Lecomte, Philippe ULg; Riva, Raphaël ULg; Jérôme, Christine ULg

in Khosravi, Ezat; Yagci, Yusuf; Savelyev, Yuri (Eds.) New smart materials via metal mediated macromolecular engineering (2009)

The functionalization of aliphatic polyesters by the copper-mediated azide–alkyne Huisgen’s cycloaddition is very efficient under mild conditions, which prevents degradation from occurring. The ... [more ▼]

The functionalization of aliphatic polyesters by the copper-mediated azide–alkyne Huisgen’s cycloaddition is very efficient under mild conditions, which prevents degradation from occurring. The implementation of this reaction requires the synthesis of aliphatic polyesters bearing pendant alkynes and azides, which can be carried out either by polycondensation or by ring-opening polymerization. [less ▲]

Detailed reference viewed: 56 (12 ULg)
Full Text
See detailα-chloro-ε-caprolactone, a versatile precursor for grafting of aliphatic polyesters
Riva, Raphaël ULg; Lenoir, Sandrine ULg; Lecomte, Philippe ULg et al

Poster (2009, September 17)

Macromolecular engineering is one of the most powerful tool to synthesise many polymers of various architectures and with tailored properties. This contribution aims at reporting on a novel strategy for ... [more ▼]

Macromolecular engineering is one of the most powerful tool to synthesise many polymers of various architectures and with tailored properties. This contribution aims at reporting on a novel strategy for the macromolecular engineering of poly-ε-caprolactone (PCL) which is based on the use of a dual monomer / initiator compound, α-chloro-ε-caprolactone (αClεCL). Indeed, αClεCL is not only polymerizable by ring opening initiated by metal alkoxides, but it is also an initiator for the atom transfer radical polymerization (ATRP) of vinyl monomers, so leading easily to the synthesis of macromonomers. Polystyrene macromonomer has been prepared by this method and successfully copolymerized with ε-caprolactone (εCL) with formation of the corresponding grafted PCL. αClεCL is also a precursor of copolyesters with εCL that bear pendant chlorides. These (co)polyesters have been used as macroinitiators for the ATRP of methyl methacrylate in order to synthesise the corresponding graft copolymer. On the other hand, the pendant chlorides of poly(αClεCL-co-εCL) copolyesters were easily converted into azide with formation of the corresponding azide bearing copolyester. This copolyester was then reacted with an alkyne bearing an ATRP initiator by “Click chemistry”. The conversion of chlorides into more efficient ATRP initiators led to the improvement of the initiation efficiency of the macroinitiator. [less ▲]

Detailed reference viewed: 76 (15 ULg)