References of "Quinton, Loïc"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMALDI-In Source Decay Applied to Mass Spectrometry Imaging: A New Tool for Protein Identification.
Debois, Delphine ULg; Bertrand, Virginie ULg; Quinton, Loïc ULg et al

in Analytical Chemistry (2010), 82(10), 3969-4304

Matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) imaging is a powerful technique giving access to the distribution of a large range of biomolecules directly from a tissue section ... [more ▼]

Matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) imaging is a powerful technique giving access to the distribution of a large range of biomolecules directly from a tissue section, allowing, for example, the discovery of new pathological biomarkers. Nevertheless, one main difficulty lies in the identification of the detected species, especially proteins. MALDI-in source decay (ISD) is used to fragment ions directly in the mass spectrometer ion source. This technique does not require any special sample treatment but only the use of a specific MALDI matrix such as 2,5-dihydroxybenzoic acid or 1,5-diaminonaphthalene. MALDI-ISD is generally employed on classical, purified samples, but here we demonstrate that ISD can also be performed directly on mixtures and on a tissue slice leading to fragment ions, allowing the identification of major proteins without any further treatment. On a porcine eye lens slice, de novo sequencing was even performed. Crystallins not yet referenced in databases were identified by sequence homology with other mammalian species. On a mouse brain slice, we demonstrate that results obtained with ISD are comparable and even better than those obtained with a classical in situ digestion. [less ▲]

Detailed reference viewed: 140 (35 ULg)
Full Text
Peer Reviewed
See detailMALDI MS Tissue Imaging of Crystallins using an original metyhod to direct protein identification on lens slices
Bertrand, Virginie ULg; Debois, Delphine ULg; Quinton, Loïc ULg et al

Poster (2010, April 16)

The lens is a transparent, biconvex structure in the eye that, along with the cornea, helps to refract light to be focused on the retina. Crystallins, α, β and γ, are the predominant structural proteins ... [more ▼]

The lens is a transparent, biconvex structure in the eye that, along with the cornea, helps to refract light to be focused on the retina. Crystallins, α, β and γ, are the predominant structural proteins in lens. They constitute 90% of water soluble proteins and contribute to its transparency and refractive properties by a uniform concentration gradient in the lens. Nevertheless, if these crystallins undergo post translational modifications, they become less soluble and the opacity of eye lens increases. This phenomenon defines cataract. Yet, the nature and the mechanism of occurring of these modifications and how they happen are not fully understood. MALDI mass spectrometry imaging is a recent technique allowing examining proteins in their native location without the need for traditional processing methods such as extraction, homogenization, and separation. Nevertheless, one main difficulty lies in the identification of the detected species, especially proteins. MALDI-In Source Decay (MALDI-ISD) is a fragmentation process occurring in the mass spectrometer ion source. When the analyzed sample is a protein, ISD fragmentation leads to b-, c- and z-ions series, which allows for some sequencing of the protein. One great advantage of ISD is its fastness and easiness to be implemented since there is no need for a special treatment of the sample. The only requirement is the use of “ISD-favourable MALDI matrix” such as 2,5-dihydroxybenzoic acid or 1,5-diaminonaphtalene. 18 µm-thick equatorial sections of frozen porcine eye lenses were realized with a cryostat. 1,5-DAN matrix was either manually deposited or sprayed with an ImagePrep automated device (Bruker Daltonics). Data were acquired with an UltraFlex II MALDI-TOF/TOF mass spectrometer (BD) in positive reflector mode. For imaging experiments, the surface of the sample was divided into 100-µm-wide pixels and 500 shots were averaged on each. Based on calculated mass differences between consecutive ISD fragments peaks, tags of amino acids were established and submitted to a search in protein databases using a BLAST algorithm (search by sequence homology). Imaging experiments showed that the localization information may be very useful to associate fragments which exhibit close distributions, suggesting they are originating from the same protein. It is thus possible to arrange fragments in groups of probable origin and to extract the mass spectrum of a high-intensity pixel. This allows to work with a “purified” ISD mass spectrum where fragments of only one protein are present and potentially exhibiting a higher number of peaks, leading to a longer tag and to an easier identification. With this imaging strategy, we were able to identify (by homology) the Beta-Crystallins S and B2, the Gamma-Crystallin B, the Alpha-Crystallin A. [less ▲]

Detailed reference viewed: 23 (2 ULg)
Full Text
See detailMALDI-TOF/TOF sequencing of peptide toxins from animal venoms
Quinton, Loïc ULg; Echterbille, Julien ULg; Gilles, Nicolas et al

Poster (2010, April 16)

Detailed reference viewed: 27 (7 ULg)
Full Text
Peer Reviewed
See detailMass spectrometry imaging of rat brain sections: nanomolar sensitivity with MALDI versus nanometer resolution by TOF–SIMS
Benabdellah, Farida; Seyer, Alexandre; Quinton, Loïc ULg et al

in Analytical and Bioanalytical Chemistry (2010), 396(1), 151-162

Mass spectrometry imaging is becoming a more and more widely used method for chemical mapping of organic and inorganic compounds from various surfaces, especially tissue sections. Two main different ... [more ▼]

Mass spectrometry imaging is becoming a more and more widely used method for chemical mapping of organic and inorganic compounds from various surfaces, especially tissue sections. Two main different techniques are now available: matrix-assisted laser desorption/ionizaton, where the sample, preliminary coated by an organic matrix, is analyzed by a UV laser beam; and secondary ion mass spectrometry, for which the target is directly submitted to a focused ion beam. Both techniques revealed excellent performances for lipid mapping of tissue surfaces. This article will discuss similarities, differences, and specificities of ion images generated by these two techniques in terms of sample preparation, sensitivity, ultimate spatial resolution, and structural analysis. [less ▲]

Detailed reference viewed: 37 (15 ULg)
Full Text
Peer Reviewed
See detailIsolation and pharmacological characterization of AdTx1, a natural peptide displaying specific insurmountable antagonism of the alpha1A-adrenoceptor
Quinton, Loïc ULg; Girard, E.; Maiga, A. et al

in British Journal of Pharmacology (2010), 159

Venoms are a rich source of ligands for ion channels, but very little is known about their capacity to modulate G-protein coupled receptor (GPCR) activity. We developed a strategy to identify novel toxins ... [more ▼]

Venoms are a rich source of ligands for ion channels, but very little is known about their capacity to modulate G-protein coupled receptor (GPCR) activity. We developed a strategy to identify novel toxins targeting GPCRs. Experimental approach: We studied the interactions of mamba venom fractions with a1-adrenoceptors in binding experiments with 3H-prazosin. The active peptide (AdTx1) was sequenced by Edman degradation and mass spectrometry fragmentation. Its synthetic homologue was pharmacologically characterized by binding experiments using cloned receptors and by functional experiments on rabbit isolated prostatic smooth muscle [less ▲]

Detailed reference viewed: 41 (11 ULg)
Full Text
Peer Reviewed
See detailSelective reduction of C = C double bonds in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of microcystins
Deleuze, Christelle ULg; De Pauw, Edwin ULg; Quinton, Loïc ULg

in European Journal of Mass Spectrometry (Chichester, England) (2010), 16(1), 91-9

Cyanobacteria are photosynthetic bacteria encountered in various aquatic environments. Some of them are able to produce powerful toxins called cyanotoxins. Among cyanotoxins, microcystins (MCs) constitute ... [more ▼]

Cyanobacteria are photosynthetic bacteria encountered in various aquatic environments. Some of them are able to produce powerful toxins called cyanotoxins. Among cyanotoxins, microcystins (MCs) constitute a group of closely related cyclic heptapeptides. Their sequences are made up of classical amino acids as well as post- translational modified ones. Interestingly, in vivo metabolism of microcystins seems to be greatly dependent on various minor structural differences and particularly those of the seventh amino acid, which can be either dehydroalanine (or a derivative), dehydroaminobutyric acid (or a derivative), serine or alanine. As a consequence, microcystins have been classified on the basis of the nature of this singular amino acid. A major difficulty in the classification of such toxins is that some of them share the same molecular masses and the same molecular formulas. Consequently, a simple mass measurement is not sufficient to determine the structure and the class of a toxin of interest. Heavy and expensive techniques are used to classify them, such as multi-dimensional nuclear magnetic resonance and amino acid analysis. In this work, a new matrix-assisted laser desorption/ionization time-of-flight method leading to an easy classification of MCs is proposed. The methodology relies on the reductive properties of the matrix 1,5-diaminonaphtalene (1,5-DAN) which appears to be able to selectively reduce the double carbon-carbon bond belonging to the seventh amino acid. Moreover, the yield of reduction seems to be influenced by the degree of substitution of this double bond, allowing a discrimination between dehydroalanine and dehydroaminobutyric acid. This selective reduction was confirmed by the study of three synthetic peptides by mass spectrometry and tandem mass spectrometry. According to these results, the use of reductive matrices seems to be promising in the study of microcystins and in their classification. More generally, 1,5-DAN allows the selective reduction of double carbon-carbon bonds. This property could also be employed in the characterization of others types of compound displaying double bonds (petrochemistry, metabolomics....). [less ▲]

Detailed reference viewed: 81 (19 ULg)
Full Text
Peer Reviewed
See detailIdentification of a novel snake peptide displaying high affinity and antagonist behaviour for the alpha2-adrenoreceptors
Rouget, Céline; Quinton, Loïc ULg; Maïga, Arhamatoulaye et al

in British Journal of Pharmacology (2010), 161

Detailed reference viewed: 30 (5 ULg)
Full Text
See detailSecretion and maturation of toxins in the venom duct of Conustextile
Dobson, Rowan ULg; Corbesier, Corine; Collodoro, Mike et al

Conference (2009, December 02)

Detailed reference viewed: 19 (6 ULg)
Full Text
See detailMALDI-Top-Down of Proteins: Overview and Applications
Quinton, Loïc ULg; Demeure, Kevin ULg; Resemann, Anja et al

Conference (2009, June)

Detailed reference viewed: 16 (5 ULg)
Full Text
See detailMaturation of toxins in the venom duct of conustextile
Dobson, Rowan ULg; Collodoro, Mike; Gilles, Nicolas et al

Poster (2009, June)

Detailed reference viewed: 10 (1 ULg)
Full Text
See detailTxXIIIA, an atypical homodimeric conotoxin found in the Conus textilevenom
Quinton, Loïc ULg; Gilles, Nicolas; De Pauw, Edwin ULg

Poster (2009, June)

Detailed reference viewed: 6 (2 ULg)
Full Text
Peer Reviewed
See detailTxXIIIA, an atypical homodimeric conotoxin found in the Conus textile venom
Quinton, Loïc ULg; Gilles, Nicolas; De Pauw, Edwin ULg

in Journal of Proteomics (2009), 72(2), 219-226

Venoms of predatory Conus snails are composed of several hundreds of peptide toxins. Many of these peptides display a high selectivity for particular membrane receptors such as ionic channels or G-protein ... [more ▼]

Venoms of predatory Conus snails are composed of several hundreds of peptide toxins. Many of these peptides display a high selectivity for particular membrane receptors such as ionic channels or G-protein coupled receptors. This property makes them very promising tools for the study of receptors and potential new drugs. Conus snails synthesize toxins under various folds, each fold related to particular pharmacological activities. Aiming the discovery of new conotoxins, we looked for toxins with original fold in the Conus textile venom by offline LC-MALDI-TOF/TOF mass spectrometry. Venom fractions were analysed by MALDI-TOF (in 2,5-dihydroxybenzoic acid) before and after the “in-solution” reduction of the disulfide bridges. Comparison of the spectra allows the classification of a large number of conotoxins according to the number of disulfide bridges. We focussed on a component at m/z 2785.7 (non-reduced)/ 1398.4 (reduced), which might represent a novel type of homodimeric toxin. The sequence TSDCCFYHNCCC was determined by De novo sequencing on the reduced species and represent a new fold. This sequence has already been described as the C-terminus part of a conotoxin scaffold IX precursor (expasy: Q9BPH1) but the power of our study resides in the fact that mass spectrometry highlights the right length of the toxin as well as its homodimeric form which could not be determined by the previous cDNA study. TxXIIIA is also the first homodimeric conotoxin with five disulfide bonds and composed of two monomers containing an odd number of cysteins. [less ▲]

Detailed reference viewed: 62 (26 ULg)
Full Text
See detailTxXIIIA, an atypical homodimeric conotoxin found in the Conus textile venom
Quinton, Loïc ULg; Gilles, Nicolas; De Pauw, Edwin ULg

Poster (2009, March)

Detailed reference viewed: 4 (0 ULg)
Full Text
Peer Reviewed
See detailPores formation on cell membranes by hederacolchiside A1 leads to a rapid release of proteins for cytosolic subproteome analysis
Mazzucchelli, Gabriel ULg; Cellier, Nicolas A; Mshviladzade, Vakhtang et al

in Journal of Proteome Research (2008), 7(4), 1683-1692

Hederacolchiside A1 was used to progressively permeabilize the membrane of human melanoma MEL-5 cells. Holes formation was followed by Scanning Electron Microscopy and interaction of the saponin with ... [more ▼]

Hederacolchiside A1 was used to progressively permeabilize the membrane of human melanoma MEL-5 cells. Holes formation was followed by Scanning Electron Microscopy and interaction of the saponin with cholesterol and phospholipids by TOF-SIMS. 2D-LC-MS/MS and 2D-SDS-PAGE show that the release of soluble proteins into serum-free culture media increases with time. This can lead to a new rapid and efficient strategy to analyze the cytosolic subproteome and it opens the door to get information from the cytosolic compartment for clinical proteomic studies. [less ▲]

Detailed reference viewed: 133 (40 ULg)
Full Text
Peer Reviewed
See detailVenomics: unravelling the complexity of animal venoms with mass spectrometry
Escoubas, Pierre; Quinton, Loïc ULg; Nicholson, Graham M.

in Journal of Mass Spectrometry [=JMS] (2008), 43

Detailed reference viewed: 77 (4 ULg)