References of "Queloz, D"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Spitzer search for the transits of HARPS low-mass planets - I. No transit for the super-Earth HD 40307b
Gillon, Michaël ULg; Deming, D.; Demory, B *-O et al

in Astronomy and Astrophysics (2010), 518(A25),

We used Spitzer and its IRAC camera to search for the transit of the super-Earth HD 40307b. The hypothesis that the planet transits could not be firmly discarded from our first photometric monitoring of a ... [more ▼]

We used Spitzer and its IRAC camera to search for the transit of the super-Earth HD 40307b. The hypothesis that the planet transits could not be firmly discarded from our first photometric monitoring of a transit window because of the uncertainty coming from the modeling of the photometric baseline. To obtain a firm result, two more transit windows were observed and a global Bayesian analysis of the three IRAC time series and the HARPS radial velocities was performed. Unfortunately, the hypothesis that the planet transited during the observed phase window is firmly rejected, while the probability that the planet does transit but that the eclipse was missed by our observations is nearly negligible (0.26%). [less ▲]

Detailed reference viewed: 13 (7 ULg)
Full Text
Peer Reviewed
See detailWASP-8b: a retrograde transiting planet in a multiple system
Queloz, D.; Anderson, D.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2010), 517

We report the discovery of WASP-8b, a transiting planet of 2.25 ± 0.08 M[SUB]Jup[/SUB] on a strongly inclined eccentric 8.15-day orbit, moving in a retrograde direction to the rotation of its late-G host ... [more ▼]

We report the discovery of WASP-8b, a transiting planet of 2.25 ± 0.08 M[SUB]Jup[/SUB] on a strongly inclined eccentric 8.15-day orbit, moving in a retrograde direction to the rotation of its late-G host star. Evidence is found that the star is in a multiple stellar system with two other companions. The dynamical complexity of the system indicates that it may have experienced secular interactions such as the Kozai mechanism or a formation that differs from the “classical” disc-migration theory. Based on observations made with HARPS spectrograph on the 3.6-m ESO telescope and the EULER Swiss telescope at La Silla Observatory, Chile.Radial velocity data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/517/L1">http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/517/L1</A> [less ▲]

Detailed reference viewed: 41 (0 ULg)
Full Text
Peer Reviewed
See detailH-band thermal emission from the 19-h period planet WASP-19b
Anderson, D. R.; Gillon, Michaël ULg; Maxted, P. F. L. et al

in Astronomy and Astrophysics (2010), 513

We present the first ground-based detection of thermal emission from an exoplanet in the H-band. Using HAWK-I on the VLT, we observed an occultation of WASP-19b by its G8V-type host star. WASP-19b is a ... [more ▼]

We present the first ground-based detection of thermal emission from an exoplanet in the H-band. Using HAWK-I on the VLT, we observed an occultation of WASP-19b by its G8V-type host star. WASP-19b is a Jupiter-mass planet with an orbital period of only 19 h, and thus, being highly irradiated, is expected to be hot. We measure an H-band occultation depth of 0.259[SUP]+0.046[/SUP][SUB]-0.044[/SUB]%, which corresponds to an H-band brightness temperature of T[SUB]H[/SUB] = 2580 ± 125 K. A cloud-free model of the planet's atmosphere, with no redistribution of energy from day-side to night-side, under predicts the planet/star flux density ratio by a factor of two. As the stellar parameters, and thus the level of planetary irradiation, are well-constrained by measurement, it is likely that our model of the planet's atmosphere is too simple. Based on data collected with the VLT/HAWKI instrument at ESO Paranal Observatory, Chile (programs 083.C-0377(A)).The photometric time-series used in this work are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/513/L3">http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/513/L3</A> [less ▲]

Detailed reference viewed: 36 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-26b: A 1-Jupiter-mass planet around an early-G-type star
Smalley, B.; Anderson, D. R.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2010)

We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-magnitude early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A ... [more ▼]

We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-magnitude early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 +/- 0.03 M_Jup and radius of 1.32 +/- 0.08 R_Jup. The host star, WASP-26, has a mass of 1.12 +/- 0.03 M_sun and a radius of 1.34 +/- 0.06 R_sun and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 +/- 15 pc and an age of 6 +/- 2 Gy. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailA transiting giant planet with a temperature between 250K and 430K
Deeg, H. J.; Moutou, C.; Erikson, A. et al

in Nature (2010), 464

Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their ... [more ▼]

Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their atmospheres. Some short-period planets, including the first terrestrial exoplanet (CoRoT-7b), have been discovered using a space mission designed to find smaller and more distant planets than can be seen from the ground. Here we report transit observations of CoRoT-9b, which orbits with a period of 95.274days on a low eccentricity of 0.11+/-0.04 around a solar-like star. Its periastron distance of 0.36 astronomical units is by far the largest of all transiting planets, yielding a `temperate' photospheric temperature estimated to be between 250 and 430K. Unlike previously known transiting planets, the present size of CoRoT-9b should not have been affected by tidal heat dissipation processes. Indeed, the planet is found to be well described by standard evolution models with an inferred interior composition consistent with that of Jupiter and Saturn. [less ▲]

Detailed reference viewed: 31 (4 ULg)
Full Text
Peer Reviewed
See detailThe thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 μm
Gillon, Michaël ULg; Lanotte, Audrey ULg; Barman, T. et al

in Astronomy and Astrophysics (2010), 511

We report measurements of the thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 microns with the Spitzer Infrared Array Camera (IRAC). Our measured occultation depths are 0.510 +- 0 ... [more ▼]

We report measurements of the thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 microns with the Spitzer Infrared Array Camera (IRAC). Our measured occultation depths are 0.510 +- 0.042 % and 0.41 +- 0.11 % at 4.5 and 8 microns, respectively. In addition to the CoRoT optical measurements, these planet/star flux ratios indicate a poor heat distribution to the night side of the planet and are in better agreement with an atmosphere free of temperature inversion layer. Still, the presence of such an inversion is not definitely ruled out by the observations and a larger wavelength coverage is required to remove the current ambiguity. Our global analysis of CoRoT, Spitzer and ground-based data confirms the large mass and size of the planet with slightly revised values (Mp = 3.47 +- 0.22 Mjup, Rp = 1.466 +- 0.044 Rjup). We find a small but significant offset in the timing of the occultation when compared to a purely circular orbital solution, leading to e cos(omega) = -0.00291 +- 0.00063 where e is the orbital eccentricity and omega is the argument of periastron. Constraining the age of the system to be at most of a few hundreds of Myr and assuming that the non-zero orbital eccentricity is not due to a third undetected body, we model the coupled orbital-tidal evolution of the system with various tidal Q values, core sizes and initial orbital parameters. For log(Q_s') = 5 - 6, our modelling is able to explain the large radius of CoRoT-2b if log(Q_p') <= 5.5 through a transient tidal circularization and corresponding planet tidal heating event. Under this model, the planet will reach its Roche limit within 20 Myr at most. [less ▲]

Detailed reference viewed: 62 (28 ULg)
Full Text
Peer Reviewed
See detailThe CORALIE survey for southern extrasolar planets. XVI. Discovery of a planetary system around HD 147018 and of two long period and massive planets orbiting HD 171238 and HD 204313
Segransan, D.; Udry, S.; Mayor, M. et al

in Astronomy and Astrophysics (2010), 511

We report the detection of a double planetary system around HD 140718 as well as the discovery of two long period and massive planets orbiting HD 171238 and HD 204313. Those discoveries were made with the ... [more ▼]

We report the detection of a double planetary system around HD 140718 as well as the discovery of two long period and massive planets orbiting HD 171238 and HD 204313. Those discoveries were made with the CORALIE Echelle spectrograph mounted on the 1.2-m Euler Swiss telescope located at La Silla Observatory, Chile. The planetary system orbiting the nearby G9 dwarf HD 147018 is composed of an eccentric inner planet (e = 0.47) with twice the mass of Jupiter (2.1 MJup) and with an orbital period of 44.24 days. The outer planet is even more massive (6.6 MJup) with a slightly eccentric orbit (e = 0.13) and a period of 1008 days. The planet orbiting HD 171238 has a minimum mass of 2.6 MJup, a period of 1523 days and an eccentricity of 0.40. It orbits a G8 dwarfs at 2.5 AU. The last planet, <ASTROBJ>HD 204313</ASTROBJ> b, is a 4.0 M[SUB]Jup[/SUB]-planet with a period of 5.3 years and has a low eccentricity (e = 0.13). It orbits a G5 dwarfs at 3.1 AU. The three parent stars are metal rich, which further strengthens the case that massive planets tend to form around metal rich stars. [less ▲]

Detailed reference viewed: 29 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-17b: an ultra-low density planet in a probable retrograde orbit
Anderson, D. R.; Hellier, C.; Gillon, Michaël ULg et al

in Astrophysical Journal (2010), 709(1), 159-167

We report the discovery of the transiting giant planet WASP-17b, the least-dense planet currently known. It is 1.6 Saturn masses but 1.5-2 Jupiter radii, giving a density of 6-14 per cent that of Jupiter ... [more ▼]

We report the discovery of the transiting giant planet WASP-17b, the least-dense planet currently known. It is 1.6 Saturn masses but 1.5-2 Jupiter radii, giving a density of 6-14 per cent that of Jupiter. WASP-17b is in a 3.7-day orbit around a sub-solar metallicity, V = 11.6, F6 star. Preliminary detection of the Rossiter-McLaughlin effect suggests that WASP-17b is in a retrograde orbit (lambda ~ -150 deg), indicative of a violent history involving planet-planet or planet-star scattering. WASP-17b's bloated radius could be due to tidal heating resulting from recent or ongoing tidal circularisation of an eccentric orbit, such as the highly eccentric orbits that typically result from scattering interactions. It will thus be important to determine more precisely the current orbital eccentricity by further high-precision radial velocity measurements or by timing the secondary eclipse, both to reduce the uncertainty on the planet's radius and to test tidal-heating models. Owing to its low surface gravity, WASP-17b's atmosphere has the largest scale height of any known planet, making it a good target for transmission spectroscopy. [less ▲]

Detailed reference viewed: 32 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission IX. CoRoT-6b: a transiting `hot Jupiter' planet in an 8.9d orbit around a low-metallicity star
Fridlund, M.; Hebrard, G.; Alonso, R. et al

in Astronomy and Astrophysics (2010), 512

The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations ... [more ▼]

The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a `hot Jupiter' planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high $^7$Li abundance. While thelightcurveindicatesamuchhigherlevelof activity than, e.g., the Sun, there is no sign of activity spectroscopically in e.g., the [Ca ] H&K lines. [less ▲]

Detailed reference viewed: 33 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-19b: The Shortest Period Transiting Exoplanet Yet Discovered
Hebb, L.; Collier-Cameron, A.; Triaud, A H M J et al

in Astrophysical Journal (2010), 708

We report on the discovery of a new extremely short period transiting extrasolar planet, WASP-19b. The planet has mass M [SUB]pl[/SUB] = 1.15 ± 0.08 M[SUB]J[/SUB] , radius R [SUB]pl[/SUB] = 1.31 ± 0.06 ... [more ▼]

We report on the discovery of a new extremely short period transiting extrasolar planet, WASP-19b. The planet has mass M [SUB]pl[/SUB] = 1.15 ± 0.08 M[SUB]J[/SUB] , radius R [SUB]pl[/SUB] = 1.31 ± 0.06 R[SUB]J[/SUB] , and orbital period P = 0.7888399 ± 0.0000008 days. Through spectroscopic analysis, we determine the host star to be a slightly super-solar metallicity ([M/H] = 0.1 ± 0.1 dex) G-dwarf with T [SUB]eff[/SUB] = 5500 ± 100 K. In addition, we detect periodic, sinusoidal flux variations in the light curve which are used to derive a rotation period for the star of P [SUB]rot[/SUB] = 10.5 ± 0.2 days. The relatively short stellar rotation period suggests that either WASP-19 is somewhat young (~ 600 Myr old) or tidal interactions between the two bodies have caused the planet to spiral inward over its lifetime resulting in the spin-up of the star. Due to the detection of the rotation period, this system has the potential to place strong constraints on the stellar tidal quality factor, Q'[SUB] s [/SUB], if a more precise age is determined. [less ▲]

Detailed reference viewed: 31 (1 ULg)
Full Text
Peer Reviewed
See detailPlanetary transit candidates in Corot-IRa01 field
Carpano, S.; Cabrera, J.; Alonso, R. et al

in Astronomy and Astrophysics (2009), 506

Context: CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. <BR />Aims: We present the list of planetary transit ... [more ▼]

Context: CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. <BR />Aims: We present the list of planetary transit candidates detected in the first field observed by CoRoT, IRa01, the initial run toward the Galactic anticenter, which lasted for 60 days. <BR />Methods: We analysed 3898 sources in the coloured bands and 5974 in the monochromatic band. Instrumental noise and stellar variability were taken into account using detrending tools before applying various transit search algorithms. <BR />Results: Fifty sources were classified as planetary transit candidates and the most reliable 40 detections were declared targets for follow-up ground-based observations. Two of these targets have so far been confirmed as planets, CoRoT-1b and CoRoT-4b, for which a complete characterization and specific studies were performed. The CoRoTâ space mission, launched on December 27th 2006, has been developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany, and Spain. Four French laboratories associated with the CNRS (LESIA, LAM, IAS ,OMP) collaborate with CNES on the satellite development. First CoRoT data are available to the public from the CoRoT archive: http://idoc-corot.ias.u-psud.fr. [less ▲]

Detailed reference viewed: 41 (5 ULg)
Full Text
Peer Reviewed
See detailNoise properties of the CoRoT data. A planet-finding perspective
Aigrain, S.; Pont, F.; Fressin, F. et al

in Astronomy and Astrophysics (2009), 506

In this short paper, we study the photometric precision of stellar light curves obtained by the CoRoT satellite in its planet-finding channel, with a particular emphasis on the time scales characteristic ... [more ▼]

In this short paper, we study the photometric precision of stellar light curves obtained by the CoRoT satellite in its planet-finding channel, with a particular emphasis on the time scales characteristic of planetary transits. Together with other articles in the same issue of this journal, it forms an attempt to provide the building blocks for a statistical interpretation of the CoRoT planet and eclipsing binary catch to date. After pre-processing the light curves so as to minimise long-term variations and outliers, we measure the scatter of the light curves in the first three CoRoT runs lasting more than 1 month, using an iterative non-linear filter to isolate signal on the time scales of interest. The behaviour of the noise on 2 h time scales is described well by a power-law with index 0.25 in R-magnitude, ranging from 0.1 mmag at R=11.5 to 1 mmag at R=16, which is close to the pre-launch specification, though still a factor 2-3 above the photon noise due to residual jitter noise and hot pixel events. There is evidence of slight degradation in the performance over time. We find clear evidence of enhanced variability on hour time scales (at the level of 0.5 mmag) in stars identified as likely giants from their R magnitude and B-V colour, which represent approximately 60 and 20% of the observed population in the directions of Aquila and Monoceros, respectively. On the other hand, median correlated noise levels over 2 h for dwarf stars are extremely low, reaching 0.05 mmag at the bright end. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. CoRoT data become publicly available one year after release to the Co-Is of the mission from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/. [less ▲]

Detailed reference viewed: 28 (4 ULg)
Full Text
Peer Reviewed
See detailPlanetary transit candidates in CoRoT-LRc01 field
Cabrera, J.; Fridlund, M.; Ollivier, M. et al

in Astronomy and Astrophysics (2009), 506

Aims: We present here the list of planetary transit candidates detected in the first long run observed by CoRoT: LRc01, towards the galactic center in the direction of Aquila, which lasted from May to ... [more ▼]

Aims: We present here the list of planetary transit candidates detected in the first long run observed by CoRoT: LRc01, towards the galactic center in the direction of Aquila, which lasted from May to October 2007. <BR />Methods: we analyzed 3719 (33%) sources in the chromatic bands and 7689 in the monochromatic band. Instrumental noise and the stellar variability were treated with several detrending tools, on which subsequently several transit search algorithms were applied. <BR />Results: Forty two sources were classified as planetary transit candidates and up to now 26 cases have been solved. One planet (CoRoT-2b) and one brown-dwarf (CoRoT-3b) have been the subjects of detailed publications. The CoRoT space mission, launched on December 27 2006, was developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany and Spain. The first CoRoT data are available to the community from the CoRoT archive: http://idoc-corot.ias.u-psud.fr. [less ▲]

Detailed reference viewed: 35 (3 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. VII. The ``hot-Jupiter''-type planet CoRoT-5b
Rauer, H.; Queloz, D.; Csizmadia, Szilard et al

in Astronomy and Astrophysics (2009), 506

Aims: The CoRoT space mission continues to photometrically monitor about 12 000 stars in its field-of-view for a series of target fields to search for transiting extrasolar planets ever since 2007. Deep ... [more ▼]

Aims: The CoRoT space mission continues to photometrically monitor about 12 000 stars in its field-of-view for a series of target fields to search for transiting extrasolar planets ever since 2007. Deep transit signals can be detected quickly in the â alarm-modeâ in parallel to the ongoing target field monitoring. CoRoT's first planets have been detected in this mode. <BR />Methods: The CoRoT raw lightcurves are filtered for orbital residuals, outliers, and low-frequency stellar signals. The phase folded lightcurve is used to fit the transit signal and derive the main planetary parameters. Radial velocity follow-up observations were initiated to secure the detection and to derive the planet mass. <BR />Results: We report the detection of CoRoT-5b, detected during observations of the LRa01 field, the first long-duration field in the galactic anti-center direction. CoRoT-5b is a â hot Jupiter-typeâ planet with a radius of 1.388[SUP]+0.046[/SUP][SUB]-0.047[/SUB] R_Jup, a mass of 0.467[SUP]+0.047[/SUP][SUB]-0.024[/SUB] M_Jup, and therefore, a mean density of 0.217[SUP]+0.031[/SUP][SUB]-0.025[/SUB] g cm[SUP]-3[/SUP]. The planet orbits an F9V star of 14.0 mag in 4.0378962 ± 0.0000019 days at an orbital distance of 0.04947[SUP]+0.00026[/SUP][SUB]-0.00029[/SUB] AU. Observations made with SOPHIE spectrograph at the Observatoire de Haute Provence (07B.PNP.MOUT), France, and HARPS spectrograph at ESO La Silla Observatory (072.C-0488(E), 082.C-0312(A)), and partly based on observations made at the Anglo-Australian Telescope. The CoRoT space mission, launched on December 27, 2006, was developed and is operated by CNES, with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain. [less ▲]

Detailed reference viewed: 25 (1 ULg)
Full Text
Peer Reviewed
See detailThe CoRoT-7 planetary system: two orbiting super-Earths
Queloz, D.; Bouchy, F.; Moutou, C. et al

in Astronomy and Astrophysics (2009), 506

We report on an intensive observational campaign carried out with HARPS at the 3.6 m telescope at La Silla on the star CoRoT-7. Additional simultaneous photometric measurements carried out with the Euler ... [more ▼]

We report on an intensive observational campaign carried out with HARPS at the 3.6 m telescope at La Silla on the star CoRoT-7. Additional simultaneous photometric measurements carried out with the Euler Swiss telescope have demonstrated that the observed radial velocity variations are dominated by rotational modulation from cool spots on the stellar surface. Several approaches were used to extract the radial velocity signal of the planet(s) from the stellar activity signal. First, a simple pre-whitening procedure was employed to find and subsequently remove periodic signals from the complex frequency structure of the radial velocity data. The dominant frequency in the power spectrum was found at 23 days, which corresponds to the rotation period of CoRoT-7. The 0.8535 day period of CoRoT-7b planetary candidate was detected with an amplitude of 3.3 m s[SUP]-1[/SUP]. Most other frequencies, some with amplitudes larger than the CoRoT-7b signal, are most likely associated with activity. A second approach used harmonic decomposition of the rotational period and up to the first three harmonics to filter out the activity signal from radial velocity variations caused by orbiting planets. After correcting the radial velocity data for activity, two periodic signals are detected: the CoRoT-7b transit period and a second one with a period of 3.69 days and an amplitude of 4 m s[SUP]-1[/SUP]. This second signal was also found in the pre-whitening analysis. We attribute the second signal to a second, more remote planet CoRoT-7c . The orbital solution of both planets is compatible with circular orbits. The mass of CoRoT-7b is 4.8±0.8 (M[SUB]â [/SUB]) and that of CoRoT-7c is 8.4± 0.9 (M[SUB]â [/SUB]), assuming both planets are on coplanar orbits. We also investigated the false positive scenario of a blend by a faint stellar binary, and this may be rejected by the stability of the bisector on a nightly scale. According to their masses both planets belong to the super-Earth planet category. The average density of CoRoT-7b is Ï =5.6± 1.3 g cm[SUP]-3[/SUP], similar to the Earth. The CoRoT-7 planetary system provides us with the first insight into the physical nature of short period super-Earth planets recently detected by radial velocity surveys. These planets may be denser than Neptune and therefore likely made of rocks like the Earth, or a mix of water ice and rocks. Based on observations made with HARPS spectrograph on the 3.6-m ESO telescope and the EULER Swiss telescope at La Silla Observatory, Chile. The HARPS results presented in this paper (Appendix A) are available in electronic form at http://www.aanda.org and at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/506/303 [less ▲]

Detailed reference viewed: 57 (2 ULg)
Full Text
Peer Reviewed
See detailPlanetary transit candidates in the CoRoT initial run: resolving their nature
Moutou, C.; Pont, F.; Bouchy, F. et al

in Astronomy and Astrophysics (2009), 506

With the release of CoRoT lightcurves of the Initial Run IRa01, 50 transiting planetary candidates have been published in a companion paper. About twenty of them were identified as binary stars from the ... [more ▼]

With the release of CoRoT lightcurves of the Initial Run IRa01, 50 transiting planetary candidates have been published in a companion paper. About twenty of them were identified as binary stars from the CoRoT lightcurve itself. Complementary observations were conducted for 29 candidates, including ground-based photometry and radial-velocity measurements. Two giant planets were identified and fully characterized. Nineteen binaries are recognized, from which 10 are background eclipsing binaries in the CoRoT mask or triple systems, diluted by the main CoRoT target. Eight cases remain of unclear origin, one of them still being a planetary candidate. Comparison with simulations shows that the actual threshold of confirmed planet detection in this field does not yet fulfill the expectations, and a number of reasons are invoked, like the ranking process based on lightcurve analyses, and the strategy and limits of follow-up observations for targets fainter than magnitude 15. Based on data obtained at Observatoire de Haute Provence with SOPHIE and with HARPS on the ESO 3.6 m telescope at La Silla Observatory. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil , ESA (RSSD and Science Programme), Germany and Spain. Tables 2 to 13, 15 to 17 and Figs. 4 to 7 are only available in electronic form at http://www.aanda.org [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailRate and nature of false positives in the CoRoT exoplanet search
Almenara, J. M.; Deeg, H. J.; Aigrain, S. et al

in Astronomy and Astrophysics (2009), 506

Context: The CoRoT satellite searches for planets by applying the transit method, monitoring up to 12 000 stars in the galactic plane for 150 days in each observing run. This search is contaminated by a ... [more ▼]

Context: The CoRoT satellite searches for planets by applying the transit method, monitoring up to 12 000 stars in the galactic plane for 150 days in each observing run. This search is contaminated by a large fraction of false positives, caused by different eclipsing binary configurations that might be confused with a transiting planet. <BR />Aims: We evaluate the rates and nature of false positives in the CoRoT exoplanets search and compare our results with semiempirical predictions. <BR />Methods: We consider the detected binary and planet candidates in the first three extended CoRoT runs, and classify the results of the follow-up observations completed to verify their planetary nature. We group the follow-up results into undiluted binaries, diluted binaries, and planets and compare their abundances with predictions from the literature. <BR />Results: 83% of the initial detections are classified as false positives using only the CoRoT light-curves, the remaining 17% require follow-up observations. Finally, 12% of the candidates in the follow-up program are planets. The shape of the overall distribution of the false positive rate follows previous predictions, except for candidates with transit depths below about 0.4%. For candidates with transit depths in the range from 0.1-0.4%, CoRoT detections are nearly complete, and this difference from predictions is probably real and dominated by a lower than expected abundance of diluted eclipsing binaries. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil , ESA (RSSD and Science Programme), Germany and Spain. [less ▲]

Detailed reference viewed: 23 (2 ULg)
Full Text
Peer Reviewed
See detailThe secondary eclipse of CoRoT-1b
Alonso, R.; Alapini, A.; Aigrain, S. et al

in Astronomy and Astrophysics (2009), 506

The transiting planet CoRoT-1b is thought to belong to the pM-class of planets, in which the thermal emission dominates in the optical wavelengths. We present a detection of its secondary eclipse in the ... [more ▼]

The transiting planet CoRoT-1b is thought to belong to the pM-class of planets, in which the thermal emission dominates in the optical wavelengths. We present a detection of its secondary eclipse in the CoRoT white channel data, whose response function goes from ~400 to ~1000 nm. We used two different filtering approaches, and several methods to evaluate the significance of a detection of the secondary eclipse. We detect a secondary eclipse centered within 20 min at the expected times for a circular orbit, with a depth of 0.016 ± 0.006%. The center of the eclipse is translated in a 1-Ï upper limit to the planet's eccentricity of e cosÏ < 0.014. Under the assumption of a zero Bond Albedo and blackbody emission from the planet, it corresponds to a T_CoRoT = 2330[SUP]+120[/SUP][SUB]-140[/SUB] K. We provide the equilibrium temperatures of the planet as a function of the amount of reflected light. If the planet is in thermal equilibrium with the incident flux from the star, our results imply an inefficient transport mechanism of the flux from the day to the night sides. Based on observations obtained with CoRoT, a space project operated by the French Space Agency, CNES, with participation of the Science Programme of ESA, ESTEC/RSSD, Austria, Belgium, Brazil, Germany and Spain. [less ▲]

Detailed reference viewed: 19 (1 ULg)
Full Text
Peer Reviewed
See detailRemoving systematics from the CoRoT light curves. I. Magnitude-dependent zero point
Mazeh, T.; Guterman, P.; Aigrain, S. et al

in Astronomy and Astrophysics (2009), 506

This paper presents an analysis that searched for systematic effects within the CoRoT exoplanet field light curves. The analysis identified a systematic effect that modified the zero point of most CoRoT ... [more ▼]

This paper presents an analysis that searched for systematic effects within the CoRoT exoplanet field light curves. The analysis identified a systematic effect that modified the zero point of most CoRoT exposures as a function of stellar magnitude. We could find this effect only after preparing a set of learning light curves that were relatively free of stellar and instrumental noise. Correcting for this effect, rejecting outliers that appear in almost every exposure, and applying SysRem, reduced the stellar RMS by about 20%, without attenuating transit signals. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. CoRoT data become publicly available one year after release to the Co-Is of the mission from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/. [less ▲]

Detailed reference viewed: 33 (9 ULg)
Full Text
Peer Reviewed
See detailWASP-16b: A New Jupiter-Like Planet Transiting a Southern Solar Analog
Lister, T. A.; Anderson, D. R.; Gillon, Michaël ULg et al

in Astrophysical Journal (2009), 703

We report the discovery from WASP-South of a new Jupiter-like extrasolar planet, WASP-16b, which transits its solar analog host star every 3.12 days. Analysis of the transit photometry and radial velocity ... [more ▼]

We report the discovery from WASP-South of a new Jupiter-like extrasolar planet, WASP-16b, which transits its solar analog host star every 3.12 days. Analysis of the transit photometry and radial velocity spectroscopic data leads to a planet with R [SUB]p[/SUB] = 1.008 ± 0.071 R [SUB]Jup[/SUB] and M [SUB]p[/SUB] = 0.855 ± 0.059 M [SUB]Jup[/SUB], orbiting a host star with R [SUB]*[/SUB] = 0.946 ± 0.054 R [SUB]sun[/SUB] and M [SUB]*[/SUB] = 1.022 ± 0.101 M [SUB]sun[/SUB]. Comparison of the high resolution stellar spectrum with synthetic spectra and stellar evolution models indicates the host star is a near-solar metallicity ([Fe/H] =0.01 ± 0.10) solar analog (T [SUB]eff[/SUB] = 5700 ± 150 K and log g = 4.5 ± 0.2) of intermediate age (tau = 2.3[SUP]+5.8[/SUP] [SUB]--2.2[/SUB] Gyr). [less ▲]

Detailed reference viewed: 40 (1 ULg)