References of "Queloz, D"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius
Leger, A.; Rouan, D.; Schneider, J. et al

in Astronomy and Astrophysics (2009), 506

We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as due to the presence of a ... [more ▼]

We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as due to the presence of a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We use CoRoT color information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy and preliminary results from Radial Velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star are derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. We examine carefully all conceivable cases of false positives, and all tests performed support the planetary hypothesis. Blends with separation larger than 0.40 arcsec or triple systems are almost excluded with a 8 10-4 risk left. We conclude that, as far as we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 10-5 day and a radius of Rp = 1.68 +/- 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. CoRoT-7b is very likely the first Super-Earth with a measured radius. [less ▲]

Detailed reference viewed: 36 (5 ULg)
Full Text
Peer Reviewed
See detailAn orbital period of 0.94days for the hot-Jupiter planet WASP-18b
Hellier, Coel; Anderson, D. R.; Cameron, A Collier et al

in Nature (2009), 460

The `hot Jupiters' that abound in lists of known extrasolar planets are thought to have formed far from their host stars, but migrate inwards through interactions with the proto-planetary disk from which ... [more ▼]

The `hot Jupiters' that abound in lists of known extrasolar planets are thought to have formed far from their host stars, but migrate inwards through interactions with the proto-planetary disk from which they were born, or by an alternative mechanism such as planet-planet scattering. The hot Jupiters closest to their parent stars, at orbital distances of only ~0.02 astronomical units, have strong tidal interactions, and systems such as OGLE-TR-56 have been suggested as tests of tidal dissipation theory. Here we report the discovery of planet WASP-18b with an orbital period of 0.94days and a mass of ten Jupiter masses (10M[SUB]Jup[/SUB]), resulting in a tidal interaction an order of magnitude stronger than that of planet OGLE-TR-56b. Under the assumption that the tidal-dissipation parameter Q of the host star is of the order of 10[SUP]6[/SUP], as measured for Solar System bodies and binary stars and as often applied to extrasolar planets, WASP-18b will be spiralling inwards on a timescale less than a thousandth that of the lifetime of its host star. Therefore either WASP-18 is in a rare, exceptionally short-lived state, or the tidal dissipation in this system (and possibly other hot-Jupiter systems) must be much weaker than in the Solar System. [less ▲]

Detailed reference viewed: 30 (6 ULg)
Full Text
Peer Reviewed
See detailDiscovery and characterization of WASP-6b, an inflated sub-Jupiter mass planet transiting a solar-type star
Gillon, Michaël ULg; Anderson, D. R.; Triaud, A H M J et al

in Astronomy and Astrophysics (2009), 501

We report the discovery of WASP-6b, an inflated sub-Jupiter mass planet transiting every 3.3610060[SUP]+ 0.0000022 [/SUP][SUB]- 0.0000035 [/SUB] days a mildly metal-poor solar-type star of magnitude V ... [more ▼]

We report the discovery of WASP-6b, an inflated sub-Jupiter mass planet transiting every 3.3610060[SUP]+ 0.0000022 [/SUP][SUB]- 0.0000035 [/SUB] days a mildly metal-poor solar-type star of magnitude V = 11.9. A combined analysis of the WASP photometry, high-precision followup transit photometry and radial velocities yield a planetary mass M[SUB]p[/SUB] = 0.503[SUP]+0.019[/SUP][SUB]-0.038[/SUB] M[SUB]J[/SUB] and radius R[SUB]p[/SUB] = 1.224[SUP]+0.051[/SUP][SUB]-0.052[/SUB] R_J, resulting in a density rho[SUB]p[/SUB] = 0.27 ± 0.05 rho_J. The mass and radius for the host star are M_ast = 0.88[SUP]+0.05[/SUP][SUB]-0.08[/SUB] M_o and R_ast = 0.870[SUP]+0.025[/SUP][SUB]-0.036[/SUB] R_o. The non-zero orbital eccentricity e = 0.054^+0.018[SUB]-0.015[/SUB] that we measure suggests that the planet underwent a massive tidal heating 1 Gyr ago that could have contributed to its inflated radius. High-precision radial velocities obtained during a transit allow us to measure a sky-projected angle between the stellar spin and orbital axis beta = 11[SUP]+14[/SUP][SUB]-18[/SUB] deg. In addition to similar published measurements, this result favors a dominant migration mechanism based on tidal interactions with a protoplanetary disk. Based on data collected with the HARPS spectrograph at ESO La Silla Observatory in the programs 082.C-0040(E) and 082.C-0608. The photometric time-series and radial velocities (Tables 4, 5) used in this work are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/785 [less ▲]

Detailed reference viewed: 26 (2 ULg)
Full Text
Peer Reviewed
See detailThe Low Density Transiting Exoplanet WASP-15b
West, R. G.; Anderson, D. R.; Gillon, Michaël ULg et al

in Astronomical Journal (The) (2009), 137

We report the discovery of a low-density exoplanet transiting an 11th magnitude star in the Southern hemisphere. WASP-15b, which orbits its host star with a period P = 3.7520656 ± 0.0000028 d, has a mass ... [more ▼]

We report the discovery of a low-density exoplanet transiting an 11th magnitude star in the Southern hemisphere. WASP-15b, which orbits its host star with a period P = 3.7520656 ± 0.0000028 d, has a mass M [SUB]p[/SUB] = 0.542 ± 0.050 M [SUB]J[/SUB] and radius R [SUB]p[/SUB] = 1.428 ± 0.077 R [SUB]J[/SUB], and is therefore one of the least dense transiting exoplanets so far discovered (rho[SUB]p[/SUB] = 0.247 ± 0.035 g cm[SUP]--3[/SUP]). An analysis of the spectrum of the host star shows it to be of spectral type around F5, with an effective temperature T [SUB]eff[/SUB] = 6300 ± 100 K and [Fe/H] = --0.17 ± 0.11. [less ▲]

Detailed reference viewed: 19 (1 ULg)
Full Text
Peer Reviewed
See detailImproved parameters for the transiting hot Jupiters WASP-4b and WASP-5b
Gillon, Michaël ULg; Smalley, B.; Hebb, L. et al

in Astronomy and Astrophysics (2009), 496

The gaseous giant planets WASP-4b and WASP-5b are transiting 12-magnitude solar-type stars in the Southern hemisphere. The aim of the present work is to refine the parameters of these systems using high ... [more ▼]

The gaseous giant planets WASP-4b and WASP-5b are transiting 12-magnitude solar-type stars in the Southern hemisphere. The aim of the present work is to refine the parameters of these systems using high cadence VLT/FORS2 z-band transit photometry and high-resolution VLT/UVES spectroscopy. For WASP-4, the new estimates for the planet radius and mass from a combined analysis of our VLT data with previously published transit photometry and radial velocities are R[SUB]p[/SUB] = 1.30[SUP]+0.05[/SUP][SUB]-0.04[/SUB] R[SUB]J[/SUB] and M[SUB]p[/SUB] = 1.21[SUP]+0.13[/SUP][SUB]-0.08[/SUB] M_J, resulting in a density rho[SUB]p[/SUB] = 0.55[SUP]+0.04[/SUP][SUB]-0.02[/SUB] rho_J. The radius and mass for the host star are R_* = 0.87[SUP]+0.04[/SUP][SUB]-0.03[/SUB] R_o and M_* = 0.85[SUP]+0.11[/SUP][SUB]-0.07[/SUB] M_o. Our ground-based photometry reaches 550 ppm at time sampling of ~50 s. Nevertheless, we also report the presence of an instrumental effect on the VLT that degraded our photometry for the WASP-5 observations. This effect could be a major problem for similar programs. Our new estimates for the parameters of the WASP-5 system are R[SUB]p[/SUB] = 1.09 ± 0.07 R_J, M[SUB]p[/SUB] = 1.58[SUP]+0.13[/SUP][SUB]-0.10[/SUB] M_J, rho[SUB]p[/SUB] = 1.23 [SUP]+0.26[/SUP][SUB]-0.16[/SUB] rho_J, R_* = 1.03[SUP]+0.06[/SUP][SUB]-0.07[/SUB] R_o, and M_* = 0.96[SUP]+0.13[/SUP][SUB]-0.09[/SUB] M_o. The measured size of WASP-5b agrees well with the basic models of irradiated planets, while WASP-4b is clearly an ``anomalously'' large planet. Based on data collected with the FORS2 imager at the VLT-UT4 telescope and with the UVES spectrograph at the VLT-UT2 telescope (Paranal Observatory, ESO, Chile) in the programme 280.C-5003. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
See detailGJ 436c? The contribution of transit timings
Demory, B*-O; Gillon, Michaël ULg; Waelkens, C. et al

in IAU Symposium 253: Transiting planets (2009, February 01)

From recent high-accuracy transit timings measurements, we discard the 5 M_earth planet recently proposed by Ribas et al. (2008). Thanks to a combined radial-velocity and transit timings overview we also ... [more ▼]

From recent high-accuracy transit timings measurements, we discard the 5 M_earth planet recently proposed by Ribas et al. (2008). Thanks to a combined radial-velocity and transit timings overview we also define a mass/period domain in which a secondary planet may be found in the system. We also show that timings obtained until now, although not sufficient to remove degeneracies on mass and period, can still restrict the parameter space of the potential secondary planet. [less ▲]

Detailed reference viewed: 13 (2 ULg)
Full Text
Peer Reviewed
See detailThe HARPS search for southern extra-solar planets. XIV. Gl 176b, a super-Earth rather than a Neptune, and at a different period
Forveille, T.; Bonfils, X.; Delfosse, X. et al

in Astronomy and Astrophysics (2009), 493

A 10.24-day Neptune-mass planet was recently announced as orbiting the nearby M2 dwarf Gl 176, based on 28 radial velocities measured with the HRS spectrograph on the Hobby-Heberly Telescope. We obtained ... [more ▼]

A 10.24-day Neptune-mass planet was recently announced as orbiting the nearby M2 dwarf Gl 176, based on 28 radial velocities measured with the HRS spectrograph on the Hobby-Heberly Telescope. We obtained 57 radial velocities of Gl 176 with the ESO 3.6 m telescope and the HARPS spectrograph, which is known for its sub-m s[SUP]-1[/SUP] stability. The median photon-noise standard error of our measurements is 1.1 m s[SUP]-1[/SUP], significantly lower than the 4.7 m s[SUP]-1[/SUP] of the HET velocities, and the 4-year period over which they were obtained overlaps considerably with the epochs of the HET measurements. The HARPS measurements show no evidence of a signal at the period of the putative HET planet, suggesting that its detection was spurious. We do find, on the other hand, strong evidence of a lower mass 8.4 M_Earth planet, in a quasi-circular orbit and at the different period of 8.78 days. The host star has moderate magnetic activity and rotates on a 39-day period, which we confirm through modulation of both contemporaneous photometry and chromospheric indices. We detect that period, as well, in the radial velocities, but it is well removed from the orbital period and offers no cause for confusion. This new detection of a super-Earth (2 M_Earth < M sin (i) < 10 M_Earth) around an M dwarf adds to the growing evidence that such planets are common around very low-mass stars. A third of the 20 known planets with M sin (i)< 0.1 M_Jup and 3 of the 7 known planets with M sin (i) < 10 M_Earth orbit an M dwarf, in contrast to just 4 of the ~300 known Jupiter-mass planets. Based on observations made with the HARPS instrument on the ESO 3.6-m telescope at La Silla Observatory under program ID 072.C-0488. [less ▲]

Detailed reference viewed: 24 (1 ULg)
Full Text
Peer Reviewed
See detailWasp-7: A Bright Transiting-Exoplanet System in the Southern Hemisphere
Hellier, Coel; Anderson, D. R.; Gillon, Michaël ULg et al

in Astrophysical Journal (2009), 690

We report that a Jupiter-mass planet, WASP-7b, transits the V = 9.5 star HD 197286 every 4.95 d. This is the brightest discovery from the WASP-South transit survey so far and is currently the brightest ... [more ▼]

We report that a Jupiter-mass planet, WASP-7b, transits the V = 9.5 star HD 197286 every 4.95 d. This is the brightest discovery from the WASP-South transit survey so far and is currently the brightest transiting-exoplanet system in the southern hemisphere. WASP-7b is among the densest of the known Jupiter-mass planets, suggesting that it has a massive core. The planet mass is 0.96[SUP]+0.12[/SUP] [SUB]--0.18[/SUB] M [SUB]Jup[/SUB], the radius is 0.915[SUP]+0.046[/SUP] [SUB]--0.040[/SUB] R [SUB]Jup[/SUB], and the density is 1.26[SUP]+0.25[/SUP] [SUB]--0.21[/SUB] rho[SUB]Jup[/SUB] (1.67[SUP]+0.33[/SUP] [SUB]--0.28[/SUB] g cm[SUP]--3[/SUP]). [less ▲]

Detailed reference viewed: 26 (2 ULg)
Full Text
Peer Reviewed
See detailThe Masses and Radii of HD186753B and TYC7096-222-1B: The First M-dwarfs known to Eclipse A-type Stars
Bentley, S. J.; Smalley, B.; Maxted, P. F. L. et al

in Astronomy and Astrophysics (2009)

We present observations of two new single-lined eclipsing binaries, both consisting of an Am star and an M-dwarf, discovered by the Wide Angle Search for Planets transit photometry survey. Using WASP ... [more ▼]

We present observations of two new single-lined eclipsing binaries, both consisting of an Am star and an M-dwarf, discovered by the Wide Angle Search for Planets transit photometry survey. Using WASP photometry and spectroscopic measurements we find that HD186753B has an orbital period of $P=1.9194$ days, a mass of $M=0.24\pm0.02 M_{\odot}$ and radius of $R=0.31^{+0.06}_{-0.06} R_{\odot}$; and that TCY7096-222-1B has an orbital period of $P=8.9582$ days, a mass of between 0.29 and 0.54 $M_{\odot}$ depending on eccentricity and radius of $R=0.263^{+0.02}_{-0.07} R_{\odot}$. We find that the Am stars have relatively low rotational velocities that closely match the orbital velocities of the M-dwarfs, suggesting that they have been "spun-down" by the M-dwarfs. [less ▲]

Detailed reference viewed: 17 (8 ULg)
Full Text
Peer Reviewed
See detailVLT transit and occultation photometry for the bloated planet CoRoT-1b
Gillon, Michaël ULg; Demory, B.-O.; Triaud, A.H.M.J. et al

in Astronomy and Astrophysics (2009), 506

We present VLT eclipse photometry for the giant planet CoRoT-1b. We observed a transit in the R-band filter and an occultation in a narrow filter centered on 2.09 microns. Our analysis of this new ... [more ▼]

We present VLT eclipse photometry for the giant planet CoRoT-1b. We observed a transit in the R-band filter and an occultation in a narrow filter centered on 2.09 microns. Our analysis of this new photometry and published radial velocities, in combination with stellar-evolutionary modeling, leads to a planetary mass and radius of 1.07 (+0.13,-0.18) M_Jup and 1.45 (+0.07,-0.13) R_Jup, confirming the very low density previously deduced from CoRoT photometry. The large occultation depth that we measure at 2.09 microns (0.278 (+0.043,-0.066) %) is consistent with thermal emission and is better reproduced by an atmospheric model with no redistribution of the absorbed stellar flux to the night side of the planet. [less ▲]

Detailed reference viewed: 48 (14 ULg)
Full Text
Peer Reviewed
See detailGround-based photometry of space-based transit detections: Photometric follow-up of the CoRoT mission
Deeg, H. J.; Gillon, Michaël ULg; Shporer, A. et al

in Astronomy and Astrophysics (2009), 506

The motivation, techniques and performance of the ground-based photometric follow-up of transit detections by the CoRoT space mission are presented. Its principal raison d’être arises from the much higher ... [more ▼]

The motivation, techniques and performance of the ground-based photometric follow-up of transit detections by the CoRoT space mission are presented. Its principal raison d’être arises from the much higher spatial resolution of common ground-based telescopes in comparison to CoRoT’s cameras. This allows the identification of many transit candidates as arising from eclipsing binaries that are contaminating CoRoT’s lightcurves, even in low-amplitude transit events that cannot be detected with ground-based obervations. For the ground observations, “on” – “off” photometry is now largely employed, in which only a short timeseries during a transit and a section outside a transit is observed and compared photometrically. CoRoTplanet candidates’ transits are being observed by a dedicated team with access to telescopes with sizes ranging from 0.2 to 2 m. As an example, the process that led to the rejection of contaminating eclipsing binaries near the host star of the Super-Earth planet CoRoT-7b is shown. Experiences and techniques from this work may also be useful for other transit-detection experiments, when the discovery instrument obtains data with a relatively low angular resolution. [less ▲]

Detailed reference viewed: 34 (2 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission . VI. CoRoT-Exo-3b: the first secure inhabitant of the brown-dwarf desert
Deleuil, M.; Deeg, H. J.; Alonso, R. et al

in Astronomy and Astrophysics (2008), 491

Context: The CoRoT space mission routinely provides high-precision photometric measurements of thousands of stars that have been continuously observed for months. Aims: The discovery and characterization ... [more ▼]

Context: The CoRoT space mission routinely provides high-precision photometric measurements of thousands of stars that have been continuously observed for months. Aims: The discovery and characterization of the first very massive transiting planetary companion with a short orbital period is reported. Methods: A series of 34 transits was detected in the CoRoT light curve of an F3V star, observed from May to October 2007 for 152 days. The radius was accurately determined and the mass derived for this new transiting, thanks to the combined analysis of the light curve and complementary ground-based observations: high-precision radial-velocity measurements, on-off photometry, and high signal-to-noise spectroscopic observations. Results: CoRoT-Exo-3b has a radius of 1.01 ± 0.07 R_Jup and transits around its F3-type primary every 4.26 days in a synchronous orbit. Its mass of 21.66 ± 1.0 M_Jup, density of 26.4 ± 5.6 g cm[SUP]-3[/SUP], and surface gravity of logg = 4.72 clearly distinguish it from the regular close-in planet population, making it the most intriguing transiting substellar object discovered so far. Conclusions: With the current data, the nature of CoRoT-Exo-3b is ambiguous, as it could either be a low-mass brown-dwarf or a member of a new class of ``superplanets''. Its discovery may help constrain the evolution of close-in planets and brown-dwarfs better. Finally, CoRoT-Exo-3b confirms the trend that massive transiting giant planets (M >= 4 M_Jup) are found preferentially around more massive stars than the Sun. The CoRoT space mission, launched on December 27th 2006, has been developed and is operating by CNES, with the contribution of Austria, Belgium, Brasil, ESA, Germany and Spain. The first CoRoT data will be available to the public in February 2009 from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/ Table of the COROT photometry is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/491/889 [less ▲]

Detailed reference viewed: 24 (0 ULg)
Full Text
Peer Reviewed
See detailTW ;Hydrae: evidence of stellar spots instead of a Hot Jupiter
Huélamo, N.; Figueira, P.; Bonfils, X. et al

in Astronomy and Astrophysics (2008), 489

Context: TW Hya is a classical T Tauri star that shows significant radial-velocity variations in the optical regime. These variations have been attributed to a 10 M_Jup planet orbiting the star at 0.04 AU ... [more ▼]

Context: TW Hya is a classical T Tauri star that shows significant radial-velocity variations in the optical regime. These variations have been attributed to a 10 M_Jup planet orbiting the star at 0.04 AU. Aims: The aim of this letter is to confirm the presence of the giant planet around TW Hya by (i) testing whether the observed RV variations can be caused by stellar spots and (ii) analyzing new optical and infrared data to detect the signal of the planet companion. Methods: We fitted the RV variations of TW Hya using a cool spot model. In addition, we obtained new high-resolution optical & infrared spectra, together with optical photometry of TW Hya and compared them with previous data. Results: Our model shows that a cold spot covering 7% of the stellar surface and located at a latitude of 54° can reproduce the reported RV variations. The model also predicts a bisector semi-amplitude variation <10 m s[SUP]-1[/SUP], which is less than the errors of the RV measurements discussed in Setiawan et al. (2008, Nature, 451, 38). The analysis of our new optical RV data, with typical errors of 10 m s[SUP]-1[/SUP], shows a larger RV amplitude that varies depending on the correlation mask used. A slight correlation between the RV variation and the bisector is also observed although not at a very significant level. The infrared H-band RV curve is almost flat, showing a small variation (<35 m s[SUP]-1[/SUP]) that is not consistent with the published optical orbit. All these results support the spot scenario rather than the presence of a hot Jupiter. Finally, the photometric data shows a 20% (peak to peak) variability, which is much larger than the 4% variation expected for the modeled cool spot. The fact that the optical data are correlated with the surface of the cross-correlation function points towards hot spots as being responsible for the photometric variability. Conclusions: We conclude that the best explanation for the RV signal observed in TW Hya is the presence of a cool stellar spot and not an orbiting hot Jupiter. Based on observations taken at the VLT (Paranal), under programs 280.C-5064(A) and 075.C-0202(A), and with the CORALIE spectrograph and EulerCAM both at the Euler Swiss telescope (La Silla). [less ▲]

Detailed reference viewed: 37 (0 ULg)
Full Text
Peer Reviewed
See detailErratum to "Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436b"
Gillon, Michaël ULg; Demory, B*-O; Barman, T. et al

in Astronomy and Astrophysics (2008), 490

Not Available

Detailed reference viewed: 21 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. IV. CoRoT-Exo-4b: a transiting planet in a 9.2 day synchronous orbit
Aigrain, S.; Collier Cameron, A.; Ollivier, M. et al

in Astronomy and Astrophysics (2008), 488

CoRoT, the first space-based transit search, provides ultra-high-precision light curves with continuous time-sampling over periods of up to 5 months. This allows the detection of transiting planets with ... [more ▼]

CoRoT, the first space-based transit search, provides ultra-high-precision light curves with continuous time-sampling over periods of up to 5 months. This allows the detection of transiting planets with relatively long periods, and the simultaneous study of the host star's photometric variability. In this Letter, we report the discovery of the transiting giant planet CoRoT-Exo-4b and use the CoRoT light curve to perform a detailed analysis of the transit and determine the stellar rotation period. The CoRoT light curve was pre-processed to remove outliers and correct for orbital residuals and artefacts due to hot pixels on the detector. After removing stellar variability about each transit, the transit light curve was analysed to determine the transit parameters. A discrete autocorrelation function method was used to derive the rotation period of the star from the out-of-transit light curve. We determine the periods of the planetary orbit and star's rotation of 9.20205 ± 0.00037 and 8.87 ± 1.12 days respectively, which is consistent with this being a synchronised system. We also derive the inclination, i = 90.00_-0.085[SUP]+0.000[/SUP] in degrees, the ratio of the orbital distance to the stellar radius, a/R[SUB]s[/SUB] = 17.36[SUB]-0.25[/SUB][SUP]+0.05[/SUP], and the planet-to-star radius ratio R_p/R_s=0.1047[SUB]-0.0022[/SUB][SUP]+0.0041[/SUP]. We discuss briefly the coincidence between the orbital period of the planet and the stellar rotation period and its possible implications for the system's migration and star-planet interaction history. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. The first CoRoT data will be available to the public in February 2009 from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/ Figures 1, 4 and 5 are only available in electronic form at http://www.aanda.org [less ▲]

Detailed reference viewed: 34 (5 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. V. CoRoT-Exo-4b: stellar and planetary parameters
Moutou, C.; Bruntt, H.; Guillot, T. et al

in Astronomy and Astrophysics (2008), 488

Aims. The CoRoT satellite has announced its fourth transiting planet (Aigrain et al. 2008, A&A, 488, L43) with space photometry. We describe and analyse complementary observations of this system performed ... [more ▼]

Aims. The CoRoT satellite has announced its fourth transiting planet (Aigrain et al. 2008, A&A, 488, L43) with space photometry. We describe and analyse complementary observations of this system performed to establish the planetary nature of the transiting body and to estimate the fundamental parameters of the planet and its parent star. Methods: We have analysed high precision radial-velocity data, ground-based photometry, and high signal-to-noise ratio spectroscopy. Results: The parent star CoRoT-Exo-4 (2MASS 06484671-0040219) is a late F-type star of mass of 1.16 M[SUB]o[/SUB] and radius of 1.17 R[SUB]o[/SUB]. The planet has a circular orbit with a period of 9.20205 d. The planet radius is 1.19 R_Jup and the mass is 0.72 M_Jup. It is a gas-giant planet with a ``normal'' internal structure of mainly H and He. CoRoT-Exo-4b has the second longest period of the known transiting planets. It is an important discovery since it occupies an empty area in the mass-period diagram of transiting exoplanets. Based on observations obtained with CoRoT, a space project operated by the French Space Agency, CNES, with participation of the Science Programme of ESA, ESTEC/RSSD, Austria, Belgium, Brazil, Germany and Spain; and on observations made with the SOPHIE spectrograph at Observatoire de Haute Provence, France (PNP.07B.MOUT), and the HARPS spectrograph at ESO La Silla Observatory (079.C-0127/F). Table 2 and Fig. 5 are only available in electronic form at http://www.aanda.org [less ▲]

Detailed reference viewed: 26 (0 ULg)
Full Text
Peer Reviewed
See detailA transiting planet among 23 new near-threshold candidates from the OGLE survey - OGLE-TR-182
Pont, F.; Tamuz, O.; Udalski, A. et al

in Astronomy and Astrophysics (2008), 487

By re-processing the data of the second season of the OGLE survey for planetary transits and adding new mesurements on the same fields gathered in subsequent years with the OGLE telescope, we have ... [more ▼]

By re-processing the data of the second season of the OGLE survey for planetary transits and adding new mesurements on the same fields gathered in subsequent years with the OGLE telescope, we have identified 23 new transit candidates, recorded as OGLE-TR-178 to OGLE-TR-200. We studied the nature of these objects with the FLAMES/UVES multi-fiber spectrograph on the VLT. One of the candidates, OGLE-TR-182, was confirmed as a transiting gas giant planet on a 4-day orbit. We characterised it with further observations using the FORS1 camera and UVES spectrograph on the VLT. OGLE-TR-182b is a typical ``hot Jupiter'' with an orbital period of 3.98 days, a mass of 1.01 ± 0.15~M_Jup and a radius of 1.13[SUP]+0.24[/SUP][SUB]-0.08[/SUB]~R_Jup. Confirming this transiting planet required a large investment in telescope time with the best instruments available, and we comment on the difficulty of the confirmation process for transiting planets in the OGLE survey. We delineate the zone were confirmation is difficult or impossible, and discuss the implications for the CoRoT space mission in its quest for transiting telluric planets. Based on observations made with the FORS1 camera and the FLAMES/UVES spectrograph at the VLT, ESO, Chile (programmes 076.C-0706 and 177.C-0666) and 1.3-m Warsaw Telescope at Las Campanas Observatory, Chile. [less ▲]

Detailed reference viewed: 32 (1 ULg)
Full Text
Peer Reviewed
See detailImproved parameters for the transiting planet HD 17156b: a high-density giant planet with a very eccentric orbit
Gillon, Michaël ULg; Triaud, A H M J; Mayor, M. et al

in Astronomy and Astrophysics (2008), 485

We report high-precision transit photometry for the recently detected planet HD 17156b. Using these new data with previously published transit photometry and radial velocity measurements, we perform a ... [more ▼]

We report high-precision transit photometry for the recently detected planet HD 17156b. Using these new data with previously published transit photometry and radial velocity measurements, we perform a combined analysis based on a Markov Chain Monte Carlo approach. The resulting mass M[SUB]p[/SUB] = 3.09[SUP]+0.22[/SUP][SUB]-0.17[/SUB]~M_Jup and radius R[SUB]p[/SUB] = 1.23[SUP]+0.17[/SUP][SUB]-0.20[/SUB] R_Jup for the planet places it at the outer edge of the density distribution of known transiting planets with rho[SUB]p[/SUB] = 1.66[SUP]+1.37[/SUP][SUB]-0.60[/SUB] rho_Jup. The obtained transit ephemeris is T_Tr = 2 454 438.48271[SUP]+0.00077[/SUP][SUB]-0.00057[/SUB] + N × 21.21747[SUP]+0.00070[/SUP][SUB]-0.00067[/SUB] BJD. The derived plausible tidal circularization time scales for HD 17156b are larger than the age of the host star. The measured high orbital eccentricity e = 0.6719[SUP]+0.0052[/SUP][SUB]-0.0063[/SUB] can thus not be interpreted as the clear sign of the presence of another body in the system. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Photometric measurements are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/485/871 [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
See detailPushing the precision limit of ground-based eclipse photometry
Gillon, Michaël ULg; Anderson, D. R.; Demory, B *-O et al

Report (2008)

Until recently, it was considered by many that ground-based photometry could not reach the high cadence sub-mmag regime because of the presence of the atmosphere. Indeed, high frequency atmospheric noises ... [more ▼]

Until recently, it was considered by many that ground-based photometry could not reach the high cadence sub-mmag regime because of the presence of the atmosphere. Indeed, high frequency atmospheric noises (mainly scintillation) limit the precision that high SNR photometry can reach within small time bins. If one is ready to damage the sampling of his photometric time-series, binning the data (or using longer exposures) allows to get better errors, but the obtained precision will be finally limited by low frequency noises. To observe several times the same planetary eclipse and to fold the photometry with the orbital period is thus generally considered as the only option to get very well sampled and precise eclipse light curve from the ground. Nevertheless, we show here that reaching the sub-mmag sub-min regime for one eclipse is possible with a ground-based instrument. This has important implications for transiting planets characterization, secondary eclipses measurement and small planets detection from the ground. [less ▲]

Detailed reference viewed: 25 (1 ULg)
Full Text
Peer Reviewed
See detailWASP-5b: a dense, very hot Jupiter transiting a 12th-mag Southern-hemisphere star
Anderson, D. R.; Gillon, Michaël ULg; Hellier, C. et al

in Monthly Notices of the Royal Astronomical Society (2008), 387

We report the discovery of WASP-5b, a Jupiter-mass planet orbiting a 12th-mag G-type star in the Southern hemisphere. The 1.6-d orbital period places WASP-5b in the class of very hot Jupiters and leads to ... [more ▼]

We report the discovery of WASP-5b, a Jupiter-mass planet orbiting a 12th-mag G-type star in the Southern hemisphere. The 1.6-d orbital period places WASP-5b in the class of very hot Jupiters and leads to a predicted equilibrium temperature of 1750K. WASP-5b is the densest of any known Jovian-mass planet, being a factor of 7 denser than TrES-4, which is subject to similar stellar insolation, and a factor of 3 denser than WASP-4b, which has a similar orbital period. We present transit photometry and radial velocity measurements of WASP-5 (= USNO-B10487-0799749), from which we derive the mass, radius and density of the planet: M[SUB]P[/SUB] = 1.58[SUP]+0.13[/SUP][SUB]-0.08[/SUB]M[SUB]J[/SUB],R[SUB]P[/SUB] = 1.090[SUP]+0.094[/SUP][SUB]-0.058[/SUB]R[SUB]J[/SUB] and rho[SUB]P[/SUB] = 1.22[SUP]+0.19[/SUP][SUB]-0.24[/SUB]rho[SUB]J[/SUB]. The orbital period is P = 1.6284296[SUP]+0.0000048[/SUP][SUB]-0.0000037[/SUB]d and the mid-transit epoch is T[SUB]C[/SUB](HJD) = 2454375.62466[SUP]+0.00026[/SUP][SUB]-0.00025[/SUB]. [less ▲]

Detailed reference viewed: 32 (1 ULg)