References of "Ponthot, Jean-Philippe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailLagrangian and arbitrary Lagrangian Eulerian simulations of complex roll-forming processes
Crutzen, Yanick ULg; Boman, Romain ULg; Papeleux, Luc ULg et al

in Comptes Rendus Mécanique (2016), 344(4-5), 251-266

The Arbitrary Lagrangian Eulerian (ALE) formalism is a breakthrough technique in the numerical simulation of the continuous-type roll-forming process. In contrast to the classical Lagrangian approach, the ... [more ▼]

The Arbitrary Lagrangian Eulerian (ALE) formalism is a breakthrough technique in the numerical simulation of the continuous-type roll-forming process. In contrast to the classical Lagrangian approach, the ALE formalism can compute the hopefully stationary state for the entire mill length with definitely effortless set-up tasks thanks to a nearly-stationary mesh. In this paper, advantages of ALE and Lagrangian formalisms are extensively discussed for simulating such continuous-type processes. Through a highly complex industrial application, the ease of use of ALE modelling is illustrated with the in-house code METAFOR. ALE and Lagrangian results are in good agreement with each other. [less ▲]

Detailed reference viewed: 17 (9 ULg)
Full Text
Peer Reviewed
See detailMesh Management Methods in Finite Element Simulations of Orthodontic Tooth Movement
Mengoni, Marlène ULg; Ponthot, Jean-Philippe ULg; Boman, Romain ULg

in Medical Engineering & Physics (2016), 38(2), 140-147

In finite element simulations of orthodontic tooth movement, one of the challenges is to represent long term tooth movement. Large deformation of the periodontal ligament and large tooth displacment due ... [more ▼]

In finite element simulations of orthodontic tooth movement, one of the challenges is to represent long term tooth movement. Large deformation of the periodontal ligament and large tooth displacment due to bone remodelling lead to large distortions of the finite element mesh when a Lagrangian formalism is used. We propose in this work to use an Arbitrary Lagrangian Eulerian (ALE) formalism to delay remeshing operations. A large tooth displacement is obtained including effect of remodelling without the need of remeshing steps but keeping a good-quality mesh. Very large deformations in soft tissues such as the periodontal ligament is obtained using a combination of the ALE formalism used continuously and a remeshing algorithm used when needed. This work demonstrates that the ALE formalism is a very efficient way to delay remeshing operations. [less ▲]

Detailed reference viewed: 70 (21 ULg)
Full Text
Peer Reviewed
See detailComparison of residual stresses on long rolled profiles measured by X-ray diffraction, ring core and the sectioning methods and simulated by FE method
Bouffioux, Chantal ULg; Pesci, Raphaël; Boman, Romain ULg et al

in Thin-Walled Structures (2016), 104

Sheet piles are produced by hot rolling, a cooling step and, if required, by a straightening operation. Numerical simulations indicate that the stress field is almost homogeneous through the thickness ... [more ▼]

Sheet piles are produced by hot rolling, a cooling step and, if required, by a straightening operation. Numerical simulations indicate that the stress field is almost homogeneous through the thickness, justifying the comparison of X-ray diffraction, ring core and the sectioning methods applied after the cooling step and after the straightening process. The equipment, the steps of the experimental procedures and the results are detailed, showing the limits, the specificities and the advantages of each method. Moreover, the amplitude and the distribution of the stresses along the width of the sections present good agreement with results of numerical simulations. [less ▲]

Detailed reference viewed: 12 (4 ULg)
Full Text
Peer Reviewed
See detailA quadratic contact element passing the patch test
Nguyen, Duc-Tué; Rauchs, Gast; Ponthot, Jean-Philippe ULg

in Key Engineering Materials [=KEM] (2016), 681

For the two dimensional contact modeling, the standard node-to-segment quadratic contact elements are known to exhibit oscillations of the contact pressure. This situation is particularly critical when ... [more ▼]

For the two dimensional contact modeling, the standard node-to-segment quadratic contact elements are known to exhibit oscillations of the contact pressure. This situation is particularly critical when using the penalty method with a high penalty parameter because the amplitude of the oscillations increase with increasing penalty parameter. The aim of this article is to present a method for removing the oscillations of contact pressure observed while using quadratic contact element. For this purpose, the nodal forces at the slave and at the master nodes need to be evaluated appropriately. One possibility is to develop a suitable procedure for computing the nodal forces. In that sake, we selected the approach first proposed in [35] in an appropriate manner. After presenting the improved quadratic contact element, some numerical examples are illustrated in this paper to compare the standard quadratic node-to-segment element with the proposed element. The examples show that the proposed element can strongly reduce the oscillating contact pressure for both plane and curved contact surfaces. [less ▲]

Detailed reference viewed: 36 (6 ULg)
Full Text
Peer Reviewed
See detailThe Influence of Equivalent Contact Area Computation in 3D Extended Node to Surface Contact Elements
Wautelet, Gaëtan ULg; Papeleux, Luc ULg; Ponthot, Jean-Philippe ULg

in Key Engineering Materials [=KEM] (2016), 681

This paper extends the frictionless penalty-based node to contact formulation with area regularization to a 3D framework. Based on our previous work [1] focused on axisymmetric modeling, two computational ... [more ▼]

This paper extends the frictionless penalty-based node to contact formulation with area regularization to a 3D framework. Based on our previous work [1] focused on axisymmetric modeling, two computational methods are also considered for the determination of the slave node area. The first method, named as the geometrical approach, is based on a force equivalence system, while the second one, named as the consistent approach, is derived from a more sophisticated scheme elaborated upon the virtual work principle. Then, the extended contact elements are derived for the contact formulations with geometrical and consistent area regularization and a consistent linearization is provided accordingly, which guarantees a quadratic rate of convergence of the global Newton Raphson iterative procedure. Finally, two numerical examples assess the performance of both contact formulations with area regularization and demonstrates the robustness and the efficiency of the node to surface contact formulation with consistent area regularization in reproducing a constant contact pressure distribution across the interface between a deformable body and a analytically-defined rigid body, irrespective of the mesh. Our findings will certainly encourage further developments towards the design of a penalty based node to surface contact algorithm passing the contact patch test, as was already done successfully in 2D contact problems [2]. [less ▲]

Detailed reference viewed: 35 (12 ULg)
Full Text
Peer Reviewed
See detail3D numerical models using a fluid or a solid formulation of FSW processes with non-cylindrical pin
Bussetta, Philippe; Dialmi, Narges; Chiumenti, Michele et al

in Advanced Modeling and Simulation in Engineering Sciences (2015), 2(27),

Friction Stir Welding (FSW) process is a relatively recent welding process (patented in 1991). FSW is a solid-state joining process during which materials to be joined are not melted. During the FSW ... [more ▼]

Friction Stir Welding (FSW) process is a relatively recent welding process (patented in 1991). FSW is a solid-state joining process during which materials to be joined are not melted. During the FSW process, the behavior of the material is at the interface between solid mechanics and fluid mechanics. In this paper, a 3D numerical model of the FSW process with a non-cylindrical tool based on a solid formulation is compared to another one based on a fluid formulation. Both models use advanced numerical techniques such as the Arbitrary Lagrangian Eulerian (ALE) formulation, remeshing or the Orthogonal Sub-Grid Scale method (OSS). It is shown that these two formulations essentially deliver the same results. [less ▲]

Detailed reference viewed: 50 (10 ULg)
Full Text
Peer Reviewed
See detailAn enhanced version of a bone remodelling model based on the continuum damage mechanics theory.
Mengoni, Marlène ULg; Ponthot, Jean-Philippe ULg

in Computer Methods in Biomechanics & Biomedical Engineering (2015), 18(12), 1367-1376

The purpose of this work is to propose an enhancement of Doblaré and García's internal bone remodelling model based on the continuum damage mechanics theory. In their paper, they stated that the evolution ... [more ▼]

The purpose of this work is to propose an enhancement of Doblaré and García's internal bone remodelling model based on the continuum damage mechanics theory. In their paper, they stated that the evolution of the internal variables of the bone microstructure, and its incidence on the modification of the elastic constitutive parameters, may be formulated following the principles of Continuum Damage Mechanics, although no actual damage was considered. The resorption and apposition criteria (similar to the damage criterion) were expressed in terms of a mechanical stimulus. However, the resorption criterion is lacking a dimensional consistency with the remodelling rate. We here propose an enhancement to this resorption criterion, insuring the dimensional consistency while retaining the physical properties of the original remodelling model. We then analyse the change in the resorption criterion hypersurface in the stress space for a 2D analysis. We finally apply the new formulation to analyse the structural evolution of a 2D femur. This analysis gives results consistent with the original model but with a faster and more stable convergence rate. [less ▲]

Detailed reference viewed: 92 (26 ULg)
Full Text
See detailLagrangian and Arbitrary Lagrangian Eulerian Simulations of Complex Roll Forming Processes
Crutzen, Yanick ULg; Boman, Romain ULg; Papeleux, Luc ULg et al

Conference (2015, July)

Finite element simulation of the roll forming process is regarded as an essential tool for the early design and optimization stages of a roll forming mill. However, such simulations are generally ... [more ▼]

Finite element simulation of the roll forming process is regarded as an essential tool for the early design and optimization stages of a roll forming mill. However, such simulations are generally incredibly time-consuming, limited to some simple cases and to the pre-cut forming method. In contrast to the classical Lagrangian approach, the Arbitrary Lagrangian Eulerian (ALE) formalism, which consists in decoupling the motion of the material and the mesh, can simulate the continuous process for the entire roll forming line at reasonable CPU cost by using a nearly-stationary mesh. In this work, the numerical results are compared to some experimental data on a U-channel in order to validate both Lagrangian and ALE models using our in-house code METAFOR. Furthermore, advantages of the ALE formalism are highlighted with the simulation of a tubular rocker panel on a 16-stand forming mill, which is a real industrial mill. [less ▲]

Detailed reference viewed: 41 (15 ULg)
Full Text
See detailComparison of fracture prediction models on sheet metal blanking simulations
Canales Cardenas, Cristian ULg; Boman, Romain ULg; Bussetta et al

Conference (2015, July)

Detailed reference viewed: 52 (20 ULg)
Full Text
See detailSimulations lagrangienne et arbitraire lagrangienne eulérienne du procédé de profilage
Crutzen, Yanick ULg; Boman, Romain ULg; Papeleux, Luc ULg et al

in Actes du 12e Colloque National en Calcul des Structures (2015, May)

L’application du formalisme Arbitraire Lagrangien Eulérien (ALE) à la simulation numérique du procédé de profilage permet de calculer l’état espéré stationnaire du procédé de type continu en modélisant de ... [more ▼]

L’application du formalisme Arbitraire Lagrangien Eulérien (ALE) à la simulation numérique du procédé de profilage permet de calculer l’état espéré stationnaire du procédé de type continu en modélisant de manière efficace l’intégralité de la ligne grâce à un maillage quasi-Eulérien. Ce type de simulation sera comparé à l’approche classique en formalisme Lagrangien dans le cadre d’une application industrielle de profilage. Les performances de la parallélisation de l’algorithme ALE seront analysées dans l’état actuel des développements du code de calcul METAFOR. [less ▲]

Detailed reference viewed: 28 (6 ULg)
Full Text
See detailNumerical prediction of resulting rollover shapes and sheared edges after blanking process
Canales Cardenas, Cristian ULg; Boman, Romain ULg; Bussetta, Philippe et al

Conference (2015, April)

Over the years, the simulation of manufacturing processes has introduced several numerical challenges for researchers in computational mechanics. In particular, the numerical modeling of sheet metal ... [more ▼]

Over the years, the simulation of manufacturing processes has introduced several numerical challenges for researchers in computational mechanics. In particular, the numerical modeling of sheet metal blanking process involves different numerical issues that must be carefully treated: a large and highly localized deformation in the shearing zone prior to fracture, complex contact interactions between the tools and the metallic sheet and finally, the ductile failure phenomenon. Despite that this process is one of the most widely used cutting techniques for mass production, the process parameters are normally set by empirical evidence due to the physical complexity resulting from the extreme amount of shearing involved. In addition, the strain-rate dependent behavior of the material must be taken into account due to high punch velocities encountered in practice. Thus, an accurate numerical tool is extremely desirable to optimize the setting parameters of this technique and will lead to a better understanding of the process. [less ▲]

Detailed reference viewed: 65 (23 ULg)
Full Text
Peer Reviewed
See detailA comparative study of finite strain formulations in the buckling of cruciform columns
Careglio, Claudio; Canales Cardenas, Cristian ULg; Garcia Garino, Carlos et al

Conference (2015, April)

Detailed reference viewed: 20 (7 ULg)
Full Text
See detailOn some drawbacks and possible improvements of a Lagrangian finite element approach for simulating incompressible flows
Cerquaglia, Marco Lucio ULg; Deliège, Geoffrey ULg; Boman, Romain ULg et al

in Oñate, E.; Bischoff, M.; Owen, D.R.J. (Eds.) et al Proceedings of the IV International Conference on Particle-Based Methods – Fundamentals and Applications (2015)

Detailed reference viewed: 45 (11 ULg)
Full Text
See detailDiscrete Element Method Modeling of Ball Mills - Liner Wear Evolution
Boemer, Dominik ULg; Rycerski, Serge; Vis, Jean et al

in Oñate, E.; Bischoff, M.; Owen, D.R.J. (Eds.) et al Proceedings of the IV International Conference on Particle-Based Methods – Fundamentals and Applications (2015)

Detailed reference viewed: 23 (4 ULg)
Full Text
Peer Reviewed
See detailComplementary approaches for the numerical simulation of the Micro- Plasto-Hydrodynamic Lubrication regime
Hubert, Cédric; Dubois, André; Dubar, Laurent et al

in Key Engineering Materials [=KEM] (2015), 651-653

This paper presents recent investigations in the field of lubricant escapes from asperities. This phenomenon, named Micro Plasto Hydrodynamic Lubrication (MPHL), induces friction variation during metal ... [more ▼]

This paper presents recent investigations in the field of lubricant escapes from asperities. This phenomenon, named Micro Plasto Hydrodynamic Lubrication (MPHL), induces friction variation during metal forming processes. A better understanding of MPH lubrication would lead to a better management of friction, which is a central element in most sheet metal forming processes. To fulfil that goal, experiments were conducted in plane strip drawing using a transparent upper tool in order to observe lubricant flow around macroscopic pyramidal cavities. These experiments were then numerically reproduced with two complementary Finite Element models. The numerical results are discussed in this paper and show good agreement with experimental measurements. [less ▲]

Detailed reference viewed: 43 (10 ULg)
Full Text
Peer Reviewed
See detailMaterial Flow Visualization Friction Stir Welding via Particle Tracing
Dialami, Narges; Chiumenti, Michele; Cervera, Miguel et al

in International Journal of Material Forming (2015), 8

This work deals with the modeling of the material flow in Friction Stir Welding (FSW) processes using particle tracing method. For the computation of particle trajectories, three accurate and ... [more ▼]

This work deals with the modeling of the material flow in Friction Stir Welding (FSW) processes using particle tracing method. For the computation of particle trajectories, three accurate and computationally efficient integration methods are implemented within a FE model for FSW process: the Backward Euler with Sub-stepping (BES), the 4-th order Runge-Kutta (RK4) and the Back and Forth Error Compensation and Correction (BFECC) methods. Firstly, their performance is compared by solving the Zalesak’s disk benchmark. Later, the developed methodology is applied to some FSW problems providing a quantitative 2D and 3D view of the material transport in the process area. The material flow pattern is compared to the experimental evidence. [less ▲]

Detailed reference viewed: 15 (0 ULg)
Full Text
Peer Reviewed
See detailEfficient 3D transfer operators based on numerical integration
Bussetta, Philippe ULg; Boman, Romain ULg; Ponthot, Jean-Philippe ULg

in International Journal for Numerical Methods in Engineering (2015), 102(3-4), 892-929

This paper deals with data transfer between two meshes as it happens in a finite element context when a remeshing has to be performed. We propose a finite-volume-based data transfer method for an ... [more ▼]

This paper deals with data transfer between two meshes as it happens in a finite element context when a remeshing has to be performed. We propose a finite-volume-based data transfer method for an efficient remeshing of three-dimensional solid mechanics problems. The originality of this transfer method stems from a linear reconstruction of the fields to be transferred on an auxiliary finite volume mesh, a fast computation of the transfer operator and the application to the complete remeshing of 3D problems. This procedure is applicable to both nodal values and discrete fields defined at quadrature points. In addition, a data transfer method using mortar elements is presented. The main improvement made to this second method comes from a fast computation of mortar elements. These two data transfer methods are compared with the simplest transfer method, which consists of a classical interpolation. After some academic examples, we present 2D forging and 3D friction stir welding applications. [less ▲]

Detailed reference viewed: 55 (10 ULg)