References of "Phillips, Christophe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDosimetry for 6-[18F]Fluoro-L-DOPA in Humans Based on Biodistribution in Mice
Bretin, Florian ULg; Warnock, Geoffrey ULg; Bahri, Mohamed Ali ULg et al

Poster (2012, October)

Aim. The objective of this work was to estimate human dosimetry for 6-[18F]Fluoro-L-DOPA (F-DOPA) from biodistribution in mice, obtained from organ harvesting at different time points and from a hybrid ... [more ▼]

Aim. The objective of this work was to estimate human dosimetry for 6-[18F]Fluoro-L-DOPA (F-DOPA) from biodistribution in mice, obtained from organ harvesting at different time points and from a hybrid method combining dynamic PET followed by organ harvesting. Materials and methods. The tissue distribution of F-DOPA over time was determined in isoflurane-anaesthetized mice. Radioassay was performed on harvested organs at 2, 5, 10, 30, 60 and 120 minutes post administration (n = 5 at each time point). Dynamic PET images were acquired in list-mode with a Siemens FOCUS 120 microPET for 120 minutes after injection and followed by radioassay of harvested organs (n = 4). List-mode data were histogrammed in 6*5s, 6*10s, 3*20s, 5*30s, 5*60s, 8*150s, 6*300s, 6*600s 3D sinograms. Final images were obtained using filtered backprojection with correction for all physical effects except for scatter. Attenuation correction resulted from a pre-injection transmission scan with a cobalt-57 point source. Organs were manually delineated. The organ time-activity-curves (TACs) from both methods were extrapolated from a simulated 35 g standard mouse to a 70 kg standard male human using a technique based on organ to bodyweight ratios. A bladder voiding scenario was used to simulate excretion every 2 h. The absorbed doses in major human organs were calculated using the extrapolated TACs with the commercially available software OLINDA/EXM (Version 1.1). Results. The extrapolated organ activity curves obtained using the harvesting and imaging methods showed a high correlation (r = 0.94 ± 0.05, p < 0.001). However, TACs from PET alone under- or overestimated the activity in individual organs in contrast to TACs obtained using the cross-calibration of the PET data with the activity in post-scan dissected organs. Those organs in the excretion pathways, comprising bladder wall, kidneys and liver, received the highest organ doses. The total body absorbed dose was 0.0118 mGy/MBq for both the imaging based and harvesting based methods. The effective dose was 0.0193 mSv/MBq for the hybrid imaging-harvesting technique and 0.0189 mSv/MBq for the pure harvesting technique. Conclusion. The doses obtained agreed well with the few results available in the literature. The hybrid technique combining dynamic PET scanning followed by organ harvesting appeared to be a good alternative to the gold standard ex vivo radioassay method. It is much faster and minimizes the effect of some weakness of the pure imaging technique, such as partial volume effect. [less ▲]

Detailed reference viewed: 44 (8 ULg)
Full Text
Peer Reviewed
See detailEvidence for a role of a cortico-subcortical network for automatic and unconscious motor inhibition of manual responses
D'Ostilio, Kevin ULg; Collette, Fabienne ULg; Phillips, Christophe ULg et al

in PLoS ONE (2012)

It is now clear that non-consciously perceived stimuli can bias our decisions. Although previous researches highlighted the importance of automatic and unconscious processes involved in voluntary action ... [more ▼]

It is now clear that non-consciously perceived stimuli can bias our decisions. Although previous researches highlighted the importance of automatic and unconscious processes involved in voluntary action, the neural correlates of such processes remain unclear. Basal ganglia dysfunctions have long been associated with impairment in automatic motor control. In addition, a key role of the medial frontal cortex has been suggested by administrating a subliminal masked prime task to a patient with a small lesion restricted to the supplementary motor area (SMA). In this task, invisible masked arrows stimuli were followed by visible arrow targets for a left or right hand response at different interstimuli intervals (ISI), producing a traditional facilitation effect for compatible trials at short ISI and a reversal inhibitory effect at longer ISI. Here, by using fast event-related fMRI and a weighted parametric analysis, we showed BOLD related activity changes in a cortico-subcortical network, especially in the SMA and the striatum, directly linked to the individual behavioral pattern. This new imaging result corroborates previous works on subliminal priming using lesional approaches. This finding implies that one of the roles of these regions was to suppress a partially activated movement below the threshold of awareness. [less ▲]

Detailed reference viewed: 32 (8 ULg)
Full Text
Peer Reviewed
See detailDosimetry for 6-[18F]Fluoro-L-DOPA in humans based on in vivo microPET scans and ex vivo tissue distribution in mice
Bretin, Florian ULg; Warnock, Geoffrey ULg; Bahri, Mohamed Ali ULg et al

Poster (2012, September)

Radiation dosimetry of new radiopharmaceuticals generally starts with studies in small animals such as mice and rats. The traditional technique has long been ex vivo measurement of the biodistribution ... [more ▼]

Radiation dosimetry of new radiopharmaceuticals generally starts with studies in small animals such as mice and rats. The traditional technique has long been ex vivo measurement of the biodistribution over time using harvested organs at different times post administration of the radiopharmaceutical. Since this approach requires a significant amount of animals, dynamic microPET studies, where the biodistribution of the tracer over time can be determined in vivo in a single scan, are an invaluable alternative. Due to known imaging artifacts and limitations, such as partial volume effect, a hybrid technique combining harvesting organs (post-scan) and dynamic imaging was introduced to achieve a cross-calibration to account for these limitations. Since 6-[18F]Fluoro-L-DOPA is a widely used PET tracer to study the dopaminergic system in neurology and oncology and there is no sound published dosimetry data, absorbed doses for major organs in humans were estimated using the traditional ex vivo technique and by dynamic microPET imaging in mice, allowing direct comparison of the results from the two techniques. The tissue distribution over time of 6-[18F]Fluoro-L-DOPA was determined by radioassay of harvested organs at 2, 5, 10, 30, 60, 120 minutes post administration (n=5 at each time point) in isoflurane-anaesthetized mice. Dynamic PET images were acquired with a FOCUS 120 microPET for 120 minutes after injection of 6-[18F]Fluoro-L-DOPA followed by radioassay of harvested organs (n=4). A bladder voiding scenario was used to simulate excretion every 2 h. The organ time-activity-curves (TACs) from both methods were extrapolated from a simulated 35 g standard mouse to a 70 kg standard male human using a technique based on organ to bodyweight ratios. The absorbed doses in major human organs were calculated with the commercially available human dosimetry software OLINDA/EXM (Version 1.1) using the extrapolated TACs. The extrapolated organ TACs obtained using the two methods showed a high correlation (average r = 0.94 ± 0.05, p < 0.001). However, TACs from PET alone under- or overestimated the activity in individual organs in contrast to TACs obtained using the cross-calibration of the PET data with the activity in post-scan dissected organs. Those organs in the excretion pathways, comprising bladder wall, kidneys and liver, received the highest organ doses. The total body absorbed dose was 0.0118 mGy/MBq for both the imaging based and harvesting based methods. The effective dose was 0.0193 mSv/MBq for the hybrid imaging-harvesting technique and 0.0189 mSv/MBq for the pure harvesting technique. Scaling errors in the PET TACs are likely caused by quantification errors such as partial volume effects and image artifacts. The use of a hybrid imaging technique to cross-calibrate the TACs improved the accuracy of the imaging-based dosimetry estimates. Therefore the hybrid technique combining dynamic imaging and harvesting organs (post-scan) is a suitable alternative to the gold standard ex vivo radioassay method. It yields comparable results yet reduces significantly the amount of animals needed in the study and can accelerate data acquisition. [less ▲]

Detailed reference viewed: 81 (19 ULg)
Full Text
Peer Reviewed
See detailItem familiarity and controlled associative retrieval in Alzheimer’s disease: an fMRI study.
Genon, Sarah ULg; Collette, Fabienne ULg; Feyers, Dorothée ULg et al

in Proceedings of the Amsterdam Memory Slam 2012 (2012, August 30)

Alzheimer’s disease (AD) is characterised by altered recollection function, with impaired controlled retrieval of associations. In contrast, familiarity-based memory for individual items may sometimes be ... [more ▼]

Alzheimer’s disease (AD) is characterised by altered recollection function, with impaired controlled retrieval of associations. In contrast, familiarity-based memory for individual items may sometimes be preserved in early stages of the disease. This is the first study that directly examines whole brain regional activity engaged during one core aspect of the recollection function: associative controlled episodic retrieval (CER), contrasted to item familiarity in AD patients. Cerebral activity related to associative CER and item familiarity in AD patients and healthy controls (HC) was measured with functional magnetic resonance imaging during a word-pair recognition task to which the process dissociation procedure was applied. Some patients had null CER estimates (AD-), whereas others did show some CER abilities (AD+) although significantly less than HC. In contrast, familiarity estimates were equivalent in the three groups. In AD+ like in controls, associative CER activated the inferior precuneus/posterior cingulate cortex (PCC). However, during associative CER, functional connection between this region and the hippocampus, the inferior parietal and the dorsolateral prefrontal cortex was significantly higher in HC than in AD+. In the three groups, item familiarity was related to activation along the intraparietal sulcus (IPS). In conclusion, whereas the preserved automatic detection of an old item (without retrieval of accurate word association) is related to a parietal activation centred on the IPS, the inferior precuneus/PCC supports associative CER ability in AD patients as in HC. However, AD patients have deficient functional connectivity during associative CER suggesting that residual recollection function in these patients might be impoverished by lack of some recollection-related aspects such as autonoetic quality, episodic details and verification. [less ▲]

Detailed reference viewed: 38 (5 ULg)
Full Text
Peer Reviewed
See detailDecoding spontaneous brain activity from fMRI using Gaussian Processes: tracking brain reactivation
Schrouff, Jessica ULg; Kussé, Caroline ULg; Wehenkel, Louis ULg et al

in 2012 Second International Workshop on Pattern Recognition in NeuroImaging (PRNI 2012): proceedings (2012, July 03)

While Multi-Variate Pattern Analysis techniques based on machine learning have now been regularly applied to neuroimaging data, decoding brain activity is usually performed in highly controlled ... [more ▼]

While Multi-Variate Pattern Analysis techniques based on machine learning have now been regularly applied to neuroimaging data, decoding brain activity is usually performed in highly controlled experimental paradigms. In more realistic conditions, the number, sequence and duration of mental states are unpredictably generated by the individual, resulting in complex and imbalanced fMRI data sets. Moreover, in the case of spontaneous brain activity, the mental states can not be linked to any external or internal stimulation, which makes it a highly difficult condition to decode. This study tests the classification of brain activity, acquired on 14 volunteers using fMRI, during mental imagery, a condition in which the number and duration of mental events were not externally imposed but self-generated. Application of the obtained model on rest sessions allowed classifying spontaneous brain activity linked to the task which, overall, correlated with their behavioural performance to the task. [less ▲]

Detailed reference viewed: 31 (13 ULg)
Full Text
Peer Reviewed
See detailPRoNTo: Pattern Recognition for Neuroimaging Toolbox
Schrouff, Jessica ULg; Rosa, Maria J; Rondina, Jane et al

Poster (2012, June 12)

Detailed reference viewed: 77 (10 ULg)
Full Text
Peer Reviewed
See detailAutomatic multiclass classification of 18FDG-PET scans for the distinction between Parkinson’s disease and atypical parkinsonian syndromes
Phillips, Christophe ULg; Schrouff, Jessica ULg; Luxen, André ULg et al

Poster (2012, June 10)

Part of the difficulty in the early diagnosis of Parkinson’s disease (PD) is in differentiating it from atypical parkinsonian disorders (APS) that have a poorer prognosis such as multiple system atrophy ... [more ▼]

Part of the difficulty in the early diagnosis of Parkinson’s disease (PD) is in differentiating it from atypical parkinsonian disorders (APS) that have a poorer prognosis such as multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). 18flurodeoxyglucose (FDG) positron emission tomography (PET) has been recommended for the early differentiation between PD and APS [1]. Here, 120 FDG PET scans (42, 31, 26 and 21 for the PD, MSA, PSP and CBS resp.) were acquired on average 3.5 years after symptoms onset (because the initial clinical features were outside the prevailing perception for PD) to look, without any a priori assumption, for cerebral FDG uptake patterns that discriminate either between the PD and APS classes, or between the four PD, MSA, PSP and CBS classes. The diagnostic used to label the scans was defined by clinical criteria on average 4.5 years after PET assessment. [less ▲]

Detailed reference viewed: 65 (3 ULg)
Full Text
Peer Reviewed
See detailAnisotropy preserving interpolation of diffusion tensors
Collard, Anne ULg; Bonnabel, Silvère; Phillips, Christophe ULg et al

Poster (2012, June)

Detailed reference viewed: 16 (10 ULg)
See detailSPM for MEG/EEG
Phillips, Christophe ULg

Scientific conference (2012, April)

Detailed reference viewed: 4 (0 ULg)
See detailAnisotropy preserving interpolation of diffusion tensors
Collard, Anne ULg; Bonnabel, Silvère; Phillips, Christophe ULg et al

Conference (2012, March)

Detailed reference viewed: 23 (5 ULg)
Full Text
Peer Reviewed
See detailImpact of noise correction on diffusion kurtosis estimation
André, Elodie ULg; Balteau, Evelyne ULg; Phillips, Christophe ULg et al

in Proceedings of the International Society for Magnetic Resonance in Medicine ... Scientific Meeting and Exhibition. International Society For Magnetic Resonance in Medicine. Scientific Meeting and Exhibition (2012), 20

Detailed reference viewed: 17 (7 ULg)
Full Text
Peer Reviewed
See detailNeural Correlates of Performance Variabilty during Motor Sequence Acquisition
Albouy, Geneviève ULg; Sterpenich, V.; Vandewalle, Gilles ULg et al

in NeuroImage (2012), 60(1), 324-331

Detailed reference viewed: 63 (15 ULg)
See detailPRoNTo: Pattern Recognition for Neuroimaging Toolbox
Schrouff, Jessica ULg; Rosa, Maria Joao; Rondina, Jane et al

Software (2012)

PRoNTo (Pattern Recognition for Neuroimaging Toolbox) is a software toolbox based on pattern recognition techniques for the analysis of neuroimaging data. Statistical pattern recognition is a field within ... [more ▼]

PRoNTo (Pattern Recognition for Neuroimaging Toolbox) is a software toolbox based on pattern recognition techniques for the analysis of neuroimaging data. Statistical pattern recognition is a field within the area of machine learning which is concerned with automatic discovery of regularities in data through the use of computer algorithms, and with the use of these regularities to take actions such as classifying the data into different categories. In PRoNTo, brain scans are treated as spatial patterns and statistical learning models are used to identify statistical properties of the data that can be used to discriminate between experimental conditions or groups of subjects (classification models) or to predict a continuous measure (regression models). PRoNTo aims to facilitate the interaction between machine learning and neuroimaging communities. On one hand, the machine learning community can contribute to the toolbox with novel machine learning models. On the other hand, the toolbox provides a variety of tools for the neuroscience and clinical neuroscience communities, enabling them to ask new questions that cannot be easily investigated using existing software and analysis tools. PRoNTo is distributed for free as copyright software under the terms of the GNU General Public License as published by the Free Software Foundation. The development of the toolbox has been supported by the PASCAL Harvest framework and The Wellcome Trust. [less ▲]

Detailed reference viewed: 14 (4 ULg)
Full Text
Peer Reviewed
See detailDecoding Semi-Constrained Brain Activity from fMRI Using Support Vector Machines and Gaussian Processes
Schrouff, Jessica ULg; Kussé, Caroline ULg; Wehenkel, Louis ULg et al

in PLoS ONE (2012), 7(4),

Predicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge. Decoding brain activity is usually performed in highly controlled experimental ... [more ▼]

Predicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge. Decoding brain activity is usually performed in highly controlled experimental paradigms characterized by a series of distinct states induced by a temporally constrained experimental design. In more realistic conditions, the number, sequence and duration of mental states are unpredictably generated by the individual, resulting in complex and imbalanced fMRI data sets. This study tests the classification of brain activity, acquired on 16 volunteers using fMRI, during mental imagery, a condition in which the number and duration of mental events were not externally imposed but self-generated. To deal with these issues, two classification techniques were considered (Support Vector Machines, SVM, and Gaussian Processes, GP), as well as different feature extraction methods (General Linear Model, GLM and SVM). These techniques were combined in order to identify the procedures leading to the highest accuracy measures. Our results showed that 12 data sets out of 16 could be significantly modeled by either SVM or GP. Model accuracies tended to be related to the degree of imbalance between classes and to task performance of the volunteers. We also conclude that the GP technique tends to be more robust than SVM to model unbalanced data sets. [less ▲]

Detailed reference viewed: 48 (16 ULg)
Full Text
Peer Reviewed
See detailInfluence of acute sleep loss on the neural correlates of alerting, orientating and executive attention components
Muto, Vincenzo ULg; Shaffii, Anahita ULg; Matarazzo, Luca et al

in Journal of Sleep Research (2012), 21(6), 648-58

Detailed reference viewed: 51 (33 ULg)
Full Text
Peer Reviewed
See detailCircadian preference modulates the neural substrate of conflict processing across the day
Schmidt, Christina ULg; Peigneux, Philippe ULg; Leclercq, Yves ULg et al

in PLoS ONE (2012), 7(1), 29658

Human morning and evening chronotypes differ in their preferred timing for sleep and wakefulness, as well as in optimal daytime periods to cope with cognitive challenges. Recent evidence suggests that ... [more ▼]

Human morning and evening chronotypes differ in their preferred timing for sleep and wakefulness, as well as in optimal daytime periods to cope with cognitive challenges. Recent evidence suggests that these preferences are not a simple by-product of socio-professional timing constraints, but can be driven by inter-individual differences in the expression of circadian and homeostatic sleep-wake promoting signals. Chronotypes thus constitute a unique tool to access the interplay between those processes under normally entrained day-night conditions, and to investigate how they impinge onto higher cognitive control processes. Using functional magnetic resonance imaging (fMRI), we assessed the influence of chronotype and time-of-day on conflict processing-related cerebral activity throughout a normal waking day. Sixteen morning and 15 evening types were recorded at two individually adapted time points (1.5 versus 10.5 hours spent awake) while performing the Stroop paradigm. Results show that interference-related hemodynamic responses are maintained or even increased in evening types from the subjective morning to the subjective evening in a set of brain areas playing a pivotal role in successful inhibitory functioning, whereas they decreased in morning types under the same conditions. Furthermore, during the evening hours, activity in a posterior hypothalamic region putatively involved in sleep-wake regulation correlated in a chronotype-specific manner with slow wave activity at the beginning of the night, an index of accumulated homeostatic sleep pressure. These results shed light into the cerebral mechanisms underlying inter-individual differences of higher-order cognitive state maintenance under normally entrained day-night conditions. [less ▲]

Detailed reference viewed: 64 (10 ULg)
Full Text
Peer Reviewed
See detailThe fate of incoming stimuli during NREM sleep is determined by spindles and the phase of the slow oscillation
Schabus, M.; Dang Vu, Thien Thanh ULg; Heib, D. P. J. et al

in Frontiers in Neurology (2012), 3(40), 1-11

Detailed reference viewed: 18 (2 ULg)
Full Text
Peer Reviewed
See detailMetabolic activity in external and internal awareness networks in severely brain-damaged patients.
Thibaut, Aurore ULg; Bruno, Marie-Aurélie ULg; Chatelle, Camille ULg et al

in Journal of Rehabilitation Medicine (2012), 44(6), 487-94

OBJECTIVE: An extrinsic cerebral network (encompassing lateral frontoparietal cortices) related to external/sensory awareness and an intrinsic midline network related to internal/self-awareness have been ... [more ▼]

OBJECTIVE: An extrinsic cerebral network (encompassing lateral frontoparietal cortices) related to external/sensory awareness and an intrinsic midline network related to internal/self-awareness have been identified recently. This study measured brain metabolism in both networks in patients with severe brain damage. DESIGN: Prospective [18F]-fluorodeoxyglucose-positron emission tomography and Coma Recovery Scale-Revised assessments in a university hospital setting. SUBJECTS: Healthy volunteers and patients in vegetative state/unresponsive wakefulness syndrome (VS/UWS), minimally conscious state (MCS), emergence from MCS (EMCS), and locked-in syndrome (LIS). RESULTS: A total of 70 patients were included in the study: 24 VS/UWS, 28 MCS, 10 EMCS, 8 LIS and 39 age-matched controls. VS/UWS showed metabolic dysfunction in extrinsic and intrinsic networks and thalami. MCS showed dysfunction mostly in intrinsic network and thalami. EMCS showed impairment in posterior cingulate/retrosplenial cortices. LIS showed dysfunction only in infratentorial regions. Coma Recovery Scale-Revised total scores correlated with metabolic activity in both extrinsic and part of the intrinsic network and thalami. CONCLUSION: Progressive recovery of extrinsic and intrinsic awareness network activity was observed in severely brain-damaged patients, ranging from VS/UWS, MCS, EMCS to LIS. The predominance of intrinsic network impairment in MCS could reflect altered internal/self-awareness in these patients, which is difficult to quantify at the bedside. [less ▲]

Detailed reference viewed: 218 (52 ULg)