References of "Pepe, F."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailWASP-23b: a transiting hot Jupiter around a K dwarf and its Rossiter-McLaughlin effect
Triaud, A H M J; Queloz, D.; Hellier, C. et al

in Astronomy and Astrophysics (2011), 531

We report the discovery of a new transiting planet in the southern hemisphere. It was found by the WASP-south transit survey and confirmed photometrically and spectroscopically by the 1.2 m Swiss Euler ... [more ▼]

We report the discovery of a new transiting planet in the southern hemisphere. It was found by the WASP-south transit survey and confirmed photometrically and spectroscopically by the 1.2 m Swiss Euler telescope, LCOGT 2m Faulkes South Telescope, the 60 cm TRAPPIST telescope, and the ESO 3.6 m telescope. The orbital period of the planet is 2.94 days. We find that it is a gas giant with a mass of 0.88 ± 0.10 M[SUB]J[/SUB] and an estimated radius of 0.96 ± 0.05 R[SUB]J[/SUB]. We obtained spectra during transit with the HARPS spectrograph and detect the Rossiter-McLaughlin effect despite its small amplitude. Because of the low signal-to-noise ratio of the effect and a small impact parameter, we cannot place a strong constraint on the projected spin-orbit angle. We find two conflicting values for the stellar rotation. We find, via spectral line broadening, that v sin I = 2.2 ± 0.3 km s[SUP]-1[/SUP], while applying another method, based on the activity level using the index log R'_HK, gives an equatorial rotation velocity of only v = 1.35 ± 0.20 km s[SUP]-1[/SUP]. Using these as priors in our analysis, the planet might be either misaligned or aligned. This result raises doubts about the use of such priors. There is evidence of neither eccentricity nor any radial velocity drift with time. Using WASP-South photometric observations confirmed with LCOGT Faulkes South Telescope, the 60 cm TRAPPIST telescope, the CORALIE spectrograph and the camera from the Swiss 1.2 m Euler Telescope placed at La Silla, Chile, as well as with the HARPS spectrograph, mounted on the ESO 3.6 m, also at La Silla, under proposal 084.C-0185. The data is publicly available at the CDS Strasbourg and on demand to the main author.RV data is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A24">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A24</A>Appendix is available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 13 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-41b: A transiting hot Jupiter planet orbiting a magnetically-active G8V star
Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A. et al

in Publications of the Astronomical Society of the Pacific [=PASP] (2011), 123

We report the discovery of a transiting planet with an orbital period of 3.05d orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8V star (V=11.6) with a metallicity close to ... [more ▼]

We report the discovery of a transiting planet with an orbital period of 3.05d orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8V star (V=11.6) with a metallicity close to solar ([Fe/H]=-0.08+-0.09). The star shows evidence of moderate chromospheric activity, both from emission in the cores of the CaII H and K lines and photometric variability with a period of 18.3d and an amplitude of about 1%. The rotation period of the star implies a gyrochronological age for WASP-41 of 1.8Gyr with an error of about 15%. We have used a combined analysis of the available photometric and spectroscopic data to derive the mass and radius of the planet (0.93+-0.06M_Jup, 1.21+-0.06R_Jup). Further observations of WASP-41 can be used to explore the connections between the properties of hot Jupiter planets and the level of chromospheric activity in their host stars. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XVI. CoRoT-14b: an unusually dense very hot Jupiter
Tingley, B.; Endl, M.; Gazzano, J*-C et al

in Astronomy and Astrophysics (2011), 528

In this paper, the CoRoT ExoplanetScience Team announces its 14th discovery. Herein, we discuss the observations and analyses that allowed us to derive the parameters of this system: a hot Jupiter with a ... [more ▼]

In this paper, the CoRoT ExoplanetScience Team announces its 14th discovery. Herein, we discuss the observations and analyses that allowed us to derive the parameters of this system: a hot Jupiter with a mass of 7.6 ± 0.6 Jupiter masses orbiting a solar-type star (F9V) with a period of only 1.5 d, less than 5 stellar radii from its parent star. It is unusual for such a massive planet to have such a small orbit: only one other known higher mass exoplanet orbits with a shorter period. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Program), Germany and Spain. [less ▲]

Detailed reference viewed: 19 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-34b: a near-grazing transiting sub-Jupiter-mass exoplanet in a hierarchical triple system
Smalley, B.; Anderson, D. R.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2011), 526

We report the discovery of WASP-34b, a sub-Jupiter-mass exoplanet transiting its 10.4-magnitude solar-type host star (1SWASP J110135.89-235138.4; TYC 6636-540-1) every 4.3177 days in a slightly eccentric ... [more ▼]

We report the discovery of WASP-34b, a sub-Jupiter-mass exoplanet transiting its 10.4-magnitude solar-type host star (1SWASP J110135.89-235138.4; TYC 6636-540-1) every 4.3177 days in a slightly eccentric orbit (e = 0.038 +/- 0.012). We find a planetary mass of 0.59 +/- 0.01 M_Jup and radius of 1.22 ^{+0.11}_{-0.08} R_Jup. There is a linear trend in the radial velocities of 55+/-4 m/s/y indicating the presence of a long-period third body in the system with a mass > 0.45 M_Jup at a distance of >1.2 AU from the host star. This third-body is either a low-mass star, white dwarf, or another planet. The transit depth ((R_P/R_*)^2 = 0.0126) and high impact parameter (b = 0.90) suggest that this could be the first known transiting exoplanet expected to undergo grazing transits, but with a confidence of only ~80%. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-25b: a 0.6 M-J planet in the Southern hemisphere
Enoch, B.; Cameron, A Collier; Anderson, D. R. et al

in Monthly Notices of the Royal Astronomical Society (2011), 410(3), 16311636

We report the detection of a 0.6 M-J extrasolar planet by WASP-South, WASP-25b, transiting its solar-type host star every 3.76d. A simultaneous analysis of the WASP, FTS and Euler photometry and CORALIE ... [more ▼]

We report the detection of a 0.6 M-J extrasolar planet by WASP-South, WASP-25b, transiting its solar-type host star every 3.76d. A simultaneous analysis of the WASP, FTS and Euler photometry and CORALIE spectroscopy yields a planet of R[SUB]p[/SUB] = 1.22 R[SUB]J[/SUB] and M[SUB]p[/SUB] = 0.58 M[SUB]J[/SUB] around a slightly metal-poor solar-type host star, [Fe/H] = - 0.05 +/- 0.10, of R[SUB]*[/SUB] = 0.92 R[SUB]solar[/SUB] and M[SUB]*[/SUB] = 1.00 M[SUB]solar[/SUB]. WASP-25b is found to have a density of ρ[SUB]p[/SUB] = 0.32 ρ[SUB]J[/SUB], a low value for a sub-Jupiter mass planet. We investigate the relationship of planetary radius to planetary equilibrium temperature and host star metallicity for transiting exoplanets with a similar mass to WASP-25b, finding that these two parameters explain the radii of most low-mass planets well. [less ▲]

Detailed reference viewed: 21 (4 ULg)
Full Text
Peer Reviewed
See detailWASP-30b: a 61 Mjup brown dwarf transiting a V=12, F8 star
Anderson, D. R.; Collier Cameron, A.; Hellier, C. et al

in Astrophysical Journal Letters (2011), 726(2), 19

We report the discovery of a 61-Jupiter-mass brown dwarf (BD), which transits its F8V host star, WASP-30, every 4.16 days. From a range of age indicators we estimate the system age to be 1-2 Gyr. We ... [more ▼]

We report the discovery of a 61-Jupiter-mass brown dwarf (BD), which transits its F8V host star, WASP-30, every 4.16 days. From a range of age indicators we estimate the system age to be 1-2 Gyr. We derive a radius (0.89 ± 0.02 R Jup) for the companion that is consistent with that predicted (0.914 R Jup) by a model of a 1 Gyr old, non-irradiated BD with a dusty atmosphere. The location of WASP-30b in the minimum of the mass-radius relation is consistent with the quantitative prediction of Chabrier & Baraffe, thus confirming the theory. [less ▲]

Detailed reference viewed: 24 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-22 b: A Transiting "Hot Jupiter" Planet in a Hierarchical Triple System
Maxted, P. F. L.; Anderson, D. R.; Gillon, Michaël ULg et al

in Astrophysical Journal (2010), 140(6), 2007-2012

We report the discovery of a transiting planet orbiting the star TYC 6446-326-1. The star, WASP-22, is a moderately bright (V = 12.0) solar-type star (T[SUB]eff[/SUB] = 6000 ± 100 K, [Fe/H] = –0.05 ± 0.08 ... [more ▼]

We report the discovery of a transiting planet orbiting the star TYC 6446-326-1. The star, WASP-22, is a moderately bright (V = 12.0) solar-type star (T[SUB]eff[/SUB] = 6000 ± 100 K, [Fe/H] = –0.05 ± 0.08). The light curve of the star obtained with the WASP-South instrument shows periodic transit-like features with a depth of about 1% and a duration of 0.14 days. The presence of a transit-like feature in the light curve is confirmed using z-band photometry obtained with Faulkes Telescope South. High-resolution spectroscopy obtained with the CORALIE and HARPS spectrographs confirms the presence of a planetary mass companion with an orbital period of 3.533 days in a near-circular orbit. From a combined analysis of the spectroscopic and photometric data assuming that the star is a typical main-sequence star we estimate that the planet has a mass M [SUB]p[/SUB] = 0.56 ± 0.02M [SUB]Jup[/SUB] and a radius R [SUB]p[/SUB] = 1.12 ± 0.04R [SUB]Jup[/SUB]. In addition, there is a linear trend of 40 m s[SUP]–1[/SUP] yr[SUP]–1[/SUP] in the radial velocities measured over 16 months, from which we infer the presence of a third body with a long-period orbit in this system. The companion may be a low mass M-dwarf, a white dwarf, or a second planet. [less ▲]

Detailed reference viewed: 41 (4 ULg)
Full Text
Peer Reviewed
See detailSpin-orbit angle measurements for six southern transiting planets. New insights into the dynamical origins of hot Jupiters
Triaud, A H M J; Collier Cameron, A.; Queloz, D. et al

in Astronomy and Astrophysics (2010), 524

Context. Several competing scenarios for planetary-system formation and evolution seek to explain how hot Jupiters came to be so close to their parent stars. Most planetary parameters evolve with time ... [more ▼]

Context. Several competing scenarios for planetary-system formation and evolution seek to explain how hot Jupiters came to be so close to their parent stars. Most planetary parameters evolve with time, making it hard to distinguish between models. The obliquity of an orbit with respect to the stellar rotation axis is thought to be more stable than other parameters such as eccentricity. Most planets, to date, appear aligned with the stellar rotation axis; the few misaligned planets so far detected are massive (> 2 M[SUB]J[/SUB]). <BR /> Aims: Our goal is to measure the degree of alignment between planetary orbits and stellar spin axes, to search for potential correlations with eccentricity or other planetary parameters and to measure long term radial velocity variability indicating the presence of other bodies in the system. <BR /> Methods: For transiting planets, the Rossiter-McLaughlin effect allows the measurement of the sky-projected angle β between the stellar rotation axis and a planet's orbital axis. Using the HARPS spectrograph, we observed the Rossiter-McLaughlin effect for six transiting hot Jupiters found by the WASP consortium. We combine these with long term radial velocity measurements obtained with CORALIE. We used a combined analysis of photometry and radial velocities, fitting model parameters with the Markov Chain Monte Carlo method. After obtaining β we attempt to statistically determine the distribution of the real spin-orbit angle ψ. <BR /> Results: We found that three of our targets have β above 90°: WASP-2b: β = 153°[SUP]+11[/SUP][SUB]-15[/SUB], WASP-15b: β = 139.6°[SUP]+5.2[/SUP][SUB]-4.3[/SUB] and WASP-17b: β = 148.5°[SUP]+5.1[/SUP][SUB]-4.2[/SUB]; the other three (WASP-4b, WASP-5b and WASP-18b) have angles compatible with 0°. We find no dependence between the misaligned angle and planet mass nor with any other planetary parameter. All six orbits are close to circular, with only one firm detection of eccentricity e = 0.00848[SUP]+0.00085[/SUP][SUB]-0.00095[/SUB] in WASP-18b. No long-term radial acceleration was detected for any of the targets. Combining all previous 20 measurements of β and our six and transforming them into a distribution of ψ we find that between about 45 and 85% of hot Jupiters have ψ > 30°. <BR /> Conclusions: Most hot Jupiters are misaligned, with a large variety of spin-orbit angles. We find observations and predictions using the Kozai mechanism match well. If these observational facts are confirmed in the future, we may then conclude that most hot Jupiters are formed from a dynamical and tidal origin without the necessity to use type I or II migration. At present, standard disc migration cannot explain the observations without invoking at least another additional process. Using observations with the high resolution échelle spectrograph HARPS mounted on the ESO 3.6 m (under proposals 072.C-0488, 082.C-0040 & 283.C-5017), and with the high resolution échelle spectrograph CORALIE on the 1.2 m Euler Swiss Telescope, both installed at the ESO La Silla Observatory in Chile.RV data is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/524/A25">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/524/A25</A> [less ▲]

Detailed reference viewed: 28 (2 ULg)
Full Text
Peer Reviewed
See detailExoplanet discoveries with the CoRoT space observatory
Lammer, H.; Dvorak, R.; Deleuil, M. et al

in Solar System Research (2010), 44

The CoRoT space observatory is a project which is led by the French space agency CNES and leading space research institutes in Austria, Brazil, Belgium, Germany and Spain and also the European Space ... [more ▼]

The CoRoT space observatory is a project which is led by the French space agency CNES and leading space research institutes in Austria, Brazil, Belgium, Germany and Spain and also the European Space Agency ESA. CoRoT observed since its launch in December 27, 2006 about 100 000 stars for the exoplanet channel, during 150 days uninterrupted high-precision photometry. Since the The CoRoT-team has several exoplanet candidates which are currently analyzed under its study, we report here the discoveries of nine exoplanets which were observed by CoRoT. Discovered exoplanets such as CoRoT-3b populate the brown dwarf desert and close the gap of measured physical properties between usual gas giants and very low mass stars. CoRoT discoveries extended the known range of planet masses down to about 4.8 Earth-masses (CoRoT-7b) and up to 21 Jupiter masses (CoRoT-3b), the radii to about 1.68 × 0.09 R [SUB]Earth[/SUB] (CoRoT-7b) and up to the most inflated hot Jupiter with 1.49 × 0.09 R [SUB]Earth[/SUB] found so far (CoRoT-1b), and the transiting exoplanet with the longest period of 95.274 days (CoRoT-9b). Giant exoplanets have been detected at low metallicity, rapidly rotating and active, spotted stars. Two CoRoT planets have host stars with the lowest content of heavy elements known to show a transit hinting towards a different planethost-star-metallicity relation then the one found by radial-velocity search programs. Finally the properties of the CoRoT-7b prove that rocky planets with a density close to Earth exist outside the Solar System. Finally the detection of the secondary transit of CoRoT-1b at a sensitivity level of 10[SUP]-5[/SUP] and the very clear detection of the "super-Earth" CoRoT-7b at 3.5 × 10[SUP]-4[/SUP] relative flux are promising evidence that the space observatory is being able to detect even smaller exoplanets with the size of the Earth. [less ▲]

Detailed reference viewed: 30 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-29b: A Saturn-sized Transiting Exoplanet
Hellier, Coel; Anderson, D. R.; Collier Cameron, A. et al

in Astrophysical Journal Letters (2010), 723

We report the discovery of a Saturn-sized planet transiting a V = 11.3, K4 dwarf star every 3.9 days. WASP-29b has a mass of 0.24 ± 0.02 M [SUB]Jup[/SUB] and a radius of 0.79 ± 0.05 R [SUB]Jup[/SUB ... [more ▼]

We report the discovery of a Saturn-sized planet transiting a V = 11.3, K4 dwarf star every 3.9 days. WASP-29b has a mass of 0.24 ± 0.02 M [SUB]Jup[/SUB] and a radius of 0.79 ± 0.05 R [SUB]Jup[/SUB], making it the smallest planet so far discovered by the WASP survey, and the exoplanet most similar in mass and radius to Saturn. The host star WASP-29 has an above-solar metallicity and fits a possible correlation for Saturn-mass planets such that planets with higher-metallicity host stars have higher core masses and thus smaller radii. [less ▲]

Detailed reference viewed: 18 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-32b: A transiting hot Jupiter planet orbiting a lithium-poor, solar-type star
Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A. et al

in Publications of the Astronomical Society of the Pacific [=PASP] (2010), 122(898), 1465-1470

We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V=11.3) solar-type star (Teff=6100 +- 100K, [Fe/H] = -0.13 +- 0.10). The ... [more ▼]

We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V=11.3) solar-type star (Teff=6100 +- 100K, [Fe/H] = -0.13 +- 0.10). The lightcurve of the star obtained with the WASP-South and WASP-North instruments shows periodic transit-like features with a depth of about 1% and a duration of 0.10d every 2.72d. The presence of a transit-like feature in the lightcurve is confirmed using z-band photometry obtained with Faulkes Telescope North. High resolution spectroscopy obtained with the CORALIE spectrograph confirms the presence of a planetary mass companion. From a combined analysis of the spectroscopic and photometric data, assuming that the star is a typical main-sequence star, we estimate that the planet has a mass M_p = 3.60 +- 0.07 M_Jup and a radius R_p = 1.19 +- 0.06R_Jup. WASP-32 is one of a small group of hot Jupiters with masses M_p > 3M_Jup. We find that some stars with hot Jupiter companions and with masses M_* =~ 1.2M_sun, including WASP-32, are depleted in lithium, but that the majority of these stars have similar lithium abundances to field stars. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-24 b: A New Transiting Close-in Hot Jupiter Orbiting a Late F-star
Street, R. A.; Simpson, E.; Barros, S. C. C. et al

in Astrophysical Journal (2010), 720

We report the discovery of a new transiting close-in giant planet, WASP-24 b, in a 2.341 day orbit, 0.037 AU from its F8-9 type host star. By matching the star's spectrum with theoretical models, we infer ... [more ▼]

We report the discovery of a new transiting close-in giant planet, WASP-24 b, in a 2.341 day orbit, 0.037 AU from its F8-9 type host star. By matching the star's spectrum with theoretical models, we infer an effective temperature T [SUB]eff[/SUB] = 6075 ± 100 K and a surface gravity of log g = 4.15 ± 0.10. A comparison of these parameters with theoretical isochrones and evolutionary mass tracks places only weak constraints on the age of the host star, which we estimate to be 3.8[SUP]+1.3[/SUP] [SUB]-1.2[/SUB] Gyr. The planetary nature of the companion was confirmed by radial velocity measurements and additional photometric observations. These data were fit simultaneously in order to determine the most probable parameter set for the system, from which we infer a planetary mass of 1.071[SUP]+0.036[/SUP] [SUB]-0.038[/SUB] M [SUB]Jup[/SUB] and radius 1.3[SUP]+0.039[/SUP] [SUB]-0.037[/SUB] R [SUB]Jup[/SUB]. [less ▲]

Detailed reference viewed: 17 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission XIV. CoRoT-11b: a transiting massive "hot-Jupiter" in a prograde orbit around a rapidly rotating F-type star
Gandolfi, D.; Hébrard, G.; Alonso, R. et al

in Astronomy and Astrophysics (2010), 524

The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V=12.9 mag F6 dwarf star (M*=1.27 +/- 0.05 Msun, R*=1.37 +/- 0.03 Rsun, Teff=6440 +/- 120 K ... [more ▼]

The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V=12.9 mag F6 dwarf star (M*=1.27 +/- 0.05 Msun, R*=1.37 +/- 0.03 Rsun, Teff=6440 +/- 120 K), with an orbital period of P=2.994329 +/- 0.000011 days and semi-major axis a=0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (vsini=40+/-5 km/s) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of mp=2.33+/-0.34 Mjup and radius rp=1.43+/-0.03 Rjup, the resulting mean density of CoRoT-11b (rho=0.99+/-0.15 g/cm^3) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior. [less ▲]

Detailed reference viewed: 29 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. X. CoRoT-10b: a giant planet in a 13.24 day eccentric orbit
Bonomo, A. S.; Santerne, A.; Alonso, R. et al

in Astronomy and Astrophysics (2010), 520

Context. The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. <BR /> Aims: We report the ... [more ▼]

Context. The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. <BR /> Aims: We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e = 0.53 ± 0.04) revolving in 13.24 days around a faint (V = 15.22) metal-rich K1V star. <BR /> Methods: We used CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar, and planetary parameters. <BR /> Results: We derive a radius of the planet of 0.97 ± 0.07 R[SUB]Jup[/SUB] and a mass of 2.75 ± 0.16 M[SUB]Jup[/SUB]. The bulk density, ρ[SUB]p[/SUB] = 3.70 ± 0.83 g cm[SUP]-3[/SUP], is ~2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M_⊕ of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, τ[SUB]circ[/SUB] > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. [less ▲]

Detailed reference viewed: 37 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XI. CoRoT-8b: a hot and dense sub-Saturn around a K1 dwarf
Bordé, P.; Bouchy, F.; Deleuil, M. et al

in Astronomy and Astrophysics (2010), 520

<BR /> Aims: We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. <BR /> Methods: We ... [more ▼]

<BR /> Aims: We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. <BR /> Methods: We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer. <BR /> Results: We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 ± 0.001 AU. It has a radius of 0.57 ± 0.02 R[SUB]J[/SUB], a mass of 0.22 ± 0.03 M[SUB]J[/SUB], and therefore a mean density of 1.6 ± 0.1 g cm[SUP]-3[/SUP]. <BR /> Conclusions: With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g cm[SUP]-3[/SUP]). We estimate its content in heavy elements to be 47-63 {M}_⊕, and the mass of its hydrogen-helium envelope to be 7-23 {M}_⊕. At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than 0.1% over an assumed integrated lifetime of 3 Ga. Observations made with SOPHIE spectrograph at Observatoire de Haute Provence, France (PNP.07B.MOUT), and the HARPS spectrograph at ESO La Silla Observatory (081.C-0388 and 083.C-0186). The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain.Both data sets are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A66">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A66</A> [less ▲]

Detailed reference viewed: 30 (2 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XII. CoRoT-12b: a short-period low-density planet transiting a solar analog star
Gillon, Michaël ULg; Hatzes, A.; Csizmadia, Szilard et al

in Astronomy and Astrophysics (2010), 520

We report the discovery by the CoRoT satellite of a new transiting giant planet in a 2.83 days orbit about a V = 15.5 solar analog star (M_* = 1.08 ± 0.08 M_ȯ, R_* = 1.1 ± 0.1 R_ȯ, T[SUB]eff[/SUB] = 5675 ... [more ▼]

We report the discovery by the CoRoT satellite of a new transiting giant planet in a 2.83 days orbit about a V = 15.5 solar analog star (M_* = 1.08 ± 0.08 M_ȯ, R_* = 1.1 ± 0.1 R_ȯ, T[SUB]eff[/SUB] = 5675 ± 80 K). This new planet, CoRoT-12b, has a mass of 0.92 ± 0.07 M[SUB]Jup[/SUB] and a radius of 1.44 ± 0.13 R[SUB]Jup[/SUB]. Its low density can be explained by standard models for irradiated planets. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Program), Germany and Spain. [less ▲]

Detailed reference viewed: 45 (5 ULg)
Full Text
Peer Reviewed
See detailThe Spitzer search for the transits of HARPS low-mass planets - I. No transit for the super-Earth HD 40307b
Gillon, Michaël ULg; Deming, D.; Demory, B *-O et al

in Astronomy and Astrophysics (2010), 518(A25),

We used Spitzer and its IRAC camera to search for the transit of the super-Earth HD 40307b. The hypothesis that the planet transits could not be firmly discarded from our first photometric monitoring of a ... [more ▼]

We used Spitzer and its IRAC camera to search for the transit of the super-Earth HD 40307b. The hypothesis that the planet transits could not be firmly discarded from our first photometric monitoring of a transit window because of the uncertainty coming from the modeling of the photometric baseline. To obtain a firm result, two more transit windows were observed and a global Bayesian analysis of the three IRAC time series and the HARPS radial velocities was performed. Unfortunately, the hypothesis that the planet transited during the observed phase window is firmly rejected, while the probability that the planet does transit but that the eclipse was missed by our observations is nearly negligible (0.26%). [less ▲]

Detailed reference viewed: 15 (7 ULg)
Full Text
Peer Reviewed
See detailWASP-8b: a retrograde transiting planet in a multiple system
Queloz, D.; Anderson, D.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2010), 517

We report the discovery of WASP-8b, a transiting planet of 2.25 ± 0.08 M[SUB]Jup[/SUB] on a strongly inclined eccentric 8.15-day orbit, moving in a retrograde direction to the rotation of its late-G host ... [more ▼]

We report the discovery of WASP-8b, a transiting planet of 2.25 ± 0.08 M[SUB]Jup[/SUB] on a strongly inclined eccentric 8.15-day orbit, moving in a retrograde direction to the rotation of its late-G host star. Evidence is found that the star is in a multiple stellar system with two other companions. The dynamical complexity of the system indicates that it may have experienced secular interactions such as the Kozai mechanism or a formation that differs from the “classical” disc-migration theory. Based on observations made with HARPS spectrograph on the 3.6-m ESO telescope and the EULER Swiss telescope at La Silla Observatory, Chile.Radial velocity data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/517/L1">http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/517/L1</A> [less ▲]

Detailed reference viewed: 44 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-26b: A 1-Jupiter-mass planet around an early-G-type star
Smalley, B.; Anderson, D. R.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2010)

We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-magnitude early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A ... [more ▼]

We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-magnitude early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 +/- 0.03 M_Jup and radius of 1.32 +/- 0.08 R_Jup. The host star, WASP-26, has a mass of 1.12 +/- 0.03 M_sun and a radius of 1.34 +/- 0.06 R_sun and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 +/- 15 pc and an age of 6 +/- 2 Gy. [less ▲]

Detailed reference viewed: 13 (0 ULg)
Full Text
Peer Reviewed
See detailA transiting giant planet with a temperature between 250K and 430K
Deeg, H. J.; Moutou, C.; Erikson, A. et al

in Nature (2010), 464

Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their ... [more ▼]

Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their atmospheres. Some short-period planets, including the first terrestrial exoplanet (CoRoT-7b), have been discovered using a space mission designed to find smaller and more distant planets than can be seen from the ground. Here we report transit observations of CoRoT-9b, which orbits with a period of 95.274days on a low eccentricity of 0.11+/-0.04 around a solar-like star. Its periastron distance of 0.36 astronomical units is by far the largest of all transiting planets, yielding a `temperate' photospheric temperature estimated to be between 250 and 430K. Unlike previously known transiting planets, the present size of CoRoT-9b should not have been affected by tidal heat dissipation processes. Indeed, the planet is found to be well described by standard evolution models with an inferred interior composition consistent with that of Jupiter and Saturn. [less ▲]

Detailed reference viewed: 41 (4 ULg)