References of "Périlleux, Claire"
     in
Bookmark and Share    
Full Text
See detailL'évolution des plantes cultivées: une histoire peu naturelle ... de la domestication aux OGM
Périlleux, Claire ULg

Conference given outside the academic context (2009)

Detailed reference viewed: 50 (6 ULg)
Full Text
See detailPartenariat F.N.P.S.M.S. - ULg / Rapport ULg 2008
Périlleux, Claire ULg; Van Kerkhoven, Fabrizio; Gonzalez, Arnaud

Report (2009)

Detailed reference viewed: 37 (16 ULg)
Full Text
Peer Reviewed
See detailFunctional analysis of an FLC-LIKE gene in root chicory
Périlleux, Claire ULg; Pieltain, Alexandra ULg; D'Aloia, Maria ULg et al

in Comparative Biochemistry and Physiology. Part A, Physiology (2009), 153A(2/Suppl.), 198-199

Vernalization is known to promote flowering in Arabidopsis thaliana by inhibiting the expression of a strong repressor: FLOWERING LOCUS C (FLC). The recent cloning of an FLC-LIKE gene in sugar beet (Beta ... [more ▼]

Vernalization is known to promote flowering in Arabidopsis thaliana by inhibiting the expression of a strong repressor: FLOWERING LOCUS C (FLC). The recent cloning of an FLC-LIKE gene in sugar beet (Beta vulgaris; BvFL1) and – here – in root chicory (Cichorium intybus; CiFL1) suggests the conservation of FLC biological function during evolution of eudicots. Hence physiological questions that remain difficult to address in Arabidopsis can be studied in other species. We investigated the correlation between CiFL1 expression and plant-age dependent responsiveness to vernalization. We also studied the effect of post-vernalization growing temperature, which can stabilize or erase the vernalized state. [less ▲]

Detailed reference viewed: 74 (25 ULg)
Full Text
Peer Reviewed
See detailGene activation cascade triggered by a single photoperiodic cycle inducing flowering in Sinapis alba
D'Aloia, Maria ULg; Tamseddak, Karim; Bonhomme, Delphine ULg et al

in The Plant Journal (2009), 59

Molecular genetic analyses in Arabidopsis disclosed a genetic pathway whereby flowering is induced by the photoperiod. This cascade is examined here within the time course of floral transition in the long ... [more ▼]

Molecular genetic analyses in Arabidopsis disclosed a genetic pathway whereby flowering is induced by the photoperiod. This cascade is examined here within the time course of floral transition in the long-day (LD) plant Sinapis alba induced by a single photoperiodic cycle. In addition to previously available sequences, the cloning of CONSTANS (SaCO) and FLOWERING LOCUS T (SaFT) homologues allowed expression analyses to be performed to follow the flowering process step by step. A diurnal rhythm in SaCO expression in the leaves was observed and transcripts of SaFT were detected when light was given in phase with SaCO kinetics only. This occurred when day length was extended or when a short day was shifted towards a ‘photophile phase’. The steady-state level of SaFT transcripts in the various physiological situations examined was found to correlate like a rheostat with floral induction strength. Kinetics of SaFT activation were also consistent with previous estimations of translocation of florigen out of leaves, which could actually occur after the inductive cycle. In response to one 22-h LD, initiation of floral meristems by the shoot apical meristem (SAM) started about 2 days after activation of SaFT and was marked by expression of APETALA1 (SaAP1). Meanwhile, LEAFY (SaLFY) was first up-regulated in leaf primordia and in the SAM. FRUITFULL (SaFUL) was later activated in the whole SAM but excluded from floral meristems. These patterns are integrated with previous observations concerning upregulation of SUPPRESSOR OF OVEREXPRESSION OF CO1 (SaSOC1) to provide a temporal and spatial map of floral transition in Sinapis. [less ▲]

Detailed reference viewed: 46 (16 ULg)
Full Text
See detailAn FLC-like gene is controlled by vernalization in root chicory
Périlleux, Claire ULg; Pieltain, Alexandra ULg; D'Aloia, Maria ULg et al

Poster (2008, September)

Vernalization is known to promote flowering in Arabidopsis via the repression by cold of the floral inhibitor gene FLOWERING LOCUS C (FLC). For long, FLC homologs have been found in Brassicaceae only but ... [more ▼]

Vernalization is known to promote flowering in Arabidopsis via the repression by cold of the floral inhibitor gene FLOWERING LOCUS C (FLC). For long, FLC homologs have been found in Brassicaceae only but it was recently reported that in sugar beet, the FLC-like gene BvFL1 functions as a repressor of flowering and is downregulated in response to cold. We describe here the cloning of CiFL1 from root chicory (Cichorium intybus). Expression patterns were studied in two cultivars, differing in their sensitivity to vernalization. Transcript level analyzes were performed during the vernalization treatment of the seedlings and in different post-vernalization conditions. Our results give further support to conservation of the biological function of FLC-like genes in eudicot species. [less ▲]

Detailed reference viewed: 55 (8 ULg)
See detailControl of floral transition in maize
Van Kerkhoven, Fabrizio ULg; D'Aloia, Maria ULg; Périlleux, Claire ULg

Conference (2008, September)

Flowering time in plants is controlled by a number of environmental factors, among which photoperiod plays a key role. Maize ancestors are short-day (SD) plants, but breeding programs have selected ... [more ▼]

Flowering time in plants is controlled by a number of environmental factors, among which photoperiod plays a key role. Maize ancestors are short-day (SD) plants, but breeding programs have selected genotypes whose flowering is largely autonomous and occurs after production of a constant number of leaves regardless of photoperiod. Only few flowering time genes have been identified in maize; one of them is INDETERMINATE1 (ID1), cloned from a late-flowering mutant and encoding a zinc finger transcription factor. By contrast, the genetical control of flowering by photoperiod is best understood in the long-day (LD) dicot Arabidopsis and the SD monocot rice. A key regulator is the CONSTANS gene that mediates between the circadian clock – the time-keeper of the plant – and the synthesis of flowering signals. Here we report the analysis of a CONSTANS homolog in maize, ZmCO, in SD and in LD, and in different parts of the plant. Expression of ZmCO was found to be rhythmic and to be much higher in young leaf primordia than in mature leaf blades. Striking coincidence was observed with expression of ID1. [less ▲]

Detailed reference viewed: 52 (8 ULg)
Full Text
See detailOptimization of the Production of the Amyloidogenic Variants of Human Lysozyme
Menzer, Linda ULg; Tocquin, Pierre ULg; Dony, Nicolas et al

Poster (2008, February 16)

Detailed reference viewed: 23 (3 ULg)
Full Text
See detailPartenariat F.N.P.S.M.S. - ULg / Rapport d'activité ULg 2007
Périlleux, Claire ULg; Van Kerkhoven, Fabrizio; Jennès, Nicolas et al

Report (2008)

Detailed reference viewed: 22 (10 ULg)
Full Text
Peer Reviewed
See detailA Temperature-sensitive mutation in the Arabidopsis thaliana phosphomannomutase gene disrupts protein glycosylation and triggers cell death.
Hoeberichts, Frank A; Vaeck, Elke; Kiddle, Guy et al

in Journal of Biological Chemistry (2008), 283(9), 5708-18

Eukaryotic phosphomannomutases (PMMs) catalyze the interconversion of mannose 6-phosphate to mannose 1-phosphate and are essential to the biosynthesis of GDP-mannose. As such, plant PMMs are involved in ... [more ▼]

Eukaryotic phosphomannomutases (PMMs) catalyze the interconversion of mannose 6-phosphate to mannose 1-phosphate and are essential to the biosynthesis of GDP-mannose. As such, plant PMMs are involved in ascorbic acid (AsA) biosynthesis and N-glycosylation. We report on the conditional phenotype of the temperature-sensitive Arabidopsis thaliana pmm-12 mutant. Mutant seedlings were phenotypically similar to wild type seedlings when grown at 16-18 degrees C but died within several days after transfer to 28 degrees C. This phenotype was observed throughout both vegetative and reproductive development. Protein extracts derived from pmm-12 plants had lower PMM protein and enzyme activity levels. In vitro biochemical analysis of recombinant proteins showed that the mutant PMM protein was compromised in its catalytic efficiency (K cat/K m). Despite significantly decreased AsA levels in pmm-12 plants, AsA deficiency could not account for the observed phenotype. Since, at restrictive temperature, total glycoprotein patterns were altered and glycosylation of protein-disulfide isomerase was perturbed, we propose that a deficiency in protein glycosylation is responsible for the observed cell death phenotype. [less ▲]

Detailed reference viewed: 57 (5 ULg)
Full Text
Peer Reviewed
See detailRevisiting the involvement of SELF-PRUNING in the sympodial growth of tomato.
Thouet, Johanna ULg; Quinet, Muriel; Ormenese, Sandra ULg et al

in Plant Physiology (2008), 148(1), 61-4

Detailed reference viewed: 23 (8 ULg)
Full Text
Peer Reviewed
See detailVernalization-induced repression of FLOWERING LOCUS C stimulates flowering in Sinapis alba and enhances plant responsiveness to photoperiod.
D'Aloia, Maria ULg; Tocquin, Pierre ULg; Périlleux, Claire ULg

in New Phytologist (2008), 178(4), 755-65

Of the Brassicaceae, Sinapis alba has been intensively studied as a physiological model of induction of flowering by a single long day (LD), while molecular-genetic analyses of Arabidopsis thaliana have ... [more ▼]

Of the Brassicaceae, Sinapis alba has been intensively studied as a physiological model of induction of flowering by a single long day (LD), while molecular-genetic analyses of Arabidopsis thaliana have disclosed complex interactions between pathways controlling flowering in response to different environmental cues, such as photoperiod and vernalization. The vernalization process in S. alba was therefore analysed here. The coding sequence of S. alba SaFLC, which is orthologous to the A. thaliana floral repressor FLOWERING LOCUS C, was isolated and the transcript levels quantified in different conditions. Two-week-old seedlings grown in noninductive short days (SDs) were vernalized for 1-6 wk. Down-regulation of SaFLC was already marked after 1 wk of cold but 2 wk was needed for a significant acceleration of flowering. Flower buds were initiated during vernalization. When vernalization was stopped after 1 wk, repression of SaFLC was not stable but a significant increase in plant responsiveness to 16-h LDs was observed when LDs followed immediately after the cold treatment. These results suggest that vernalization does not only work when plants experience long exposure to cold during the winter: shorter cold periods might stimulate flowering of LD plants if they occur when photoperiod is increasing, such as in spring. [less ▲]

Detailed reference viewed: 67 (34 ULg)
Full Text
See detailPas si zen: des plantes de maïs stressées sont placées sous haute surveillance
Périlleux, Claire ULg

Article for general public (2008)

Detailed reference viewed: 12 (1 ULg)
Full Text
See detailLes plantes ont-elles un quota de CO2 fixé ?
Périlleux, Claire ULg

Article for general public (2008)

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailStability of SaFLC repression in Sinapis alba. A link with quantitative effect of vernalization
D'Aloia, Maria ULg; Périlleux, Claire ULg

in Plant Signaling & Behavior (2008), 3(11), 1002-1004

In Arabidopsis thaliana, vernalization promotes flowering by repressing the floral inhibitor FLOWERING LOCUS C (AtFLC). This repression is mediated through epigenetic modifications at the AtFLC locus ... [more ▼]

In Arabidopsis thaliana, vernalization promotes flowering by repressing the floral inhibitor FLOWERING LOCUS C (AtFLC). This repression is mediated through epigenetic modifications at the AtFLC locus, leading to gene silencing. Whether the well-known quantitative effect of vernalization is due to the degree of AtFLC repression and/or its stability after return to normal temperature conditions has not been clarified. Here, we examine this question in white mustard, Sinapis alba, taking advantage of our recent cloning of the AtFLC ortholog SaFLC. [less ▲]

Detailed reference viewed: 19 (1 ULg)
Full Text
See detailPartenariat F.N.P.S.M.S. - ULg / Rapport d'activité ULg 2006
Périlleux, Claire ULg; Van Kerkoven, Fabrizio; Jennès, Nicolas

Report (2007)

Detailed reference viewed: 8 (4 ULg)