References of "Orban, Philippe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCoupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers
Wildemeersch, Samuel ULg; Jamin, Pierre ULg; Orban, Philippe ULg et al

in Journal of Contaminant Hydrology (2014), 169

Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore ... [more ▼]

Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54 MJ/m3/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for estimating the entire set of heat transfer parameters and their spatial distribution by inverse modeling. [less ▲]

Detailed reference viewed: 45 (17 ULg)
Full Text
Peer Reviewed
See detailAssessing the effects of spatial discretization on large-scale flow model performance and prediction uncertainty
Wildemeersch, Samuel ULg; Goderniaux, Pascal; Orban, Philippe ULg et al

in Journal of Hydrology (2014), 510

Large-scale physically-based and spatially-distributed models (>100 km2) constitute useful tools for water management since they take explicitly into account the heterogeneity and the physical processes ... [more ▼]

Large-scale physically-based and spatially-distributed models (>100 km2) constitute useful tools for water management since they take explicitly into account the heterogeneity and the physical processes occurring in the subsurface for predicting the evolution of discharge and hydraulic heads for several predictive scenarios. However, such models are characterized by lengthy execution times. Therefore, modelers often coarsen spatial discretization of large-scale physically-based and spatially-distributed models for reducing the number of unknowns and the execution times. This study investigates the influence of such a coarsening of model grid on model performance and prediction uncertainty. The improvement of model performance obtained with an automatic calibration process is also investigated. The results obtained show that coarsening spatial discretization mainly influences the simulation of discharge due to a poor representation of surface water network and a smoothing of surface slopes that prevents from simulating properly surface water-groundwater interactions and runoff processes. Parameter sensitivities are not significantly influenced by grid coarsening and calibration can compensate, to some extent, for model errors induced by grid coarsening. The results also show that coarsening spatial discretization mainly influences the uncertainty on discharge predictions. However, model prediction uncertainties on discharge only increase significantly for very coarse spatial discretizations. [less ▲]

Detailed reference viewed: 62 (14 ULg)
Full Text
See detailHeat transfer characterization using heat and solute tracer tests in a shallow alluvial aquifer
Dassargues, Alain ULg; Wildemeersch, Samuel ULg; Jamin, Pierre ULg et al

Poster (2013, December 09)

Very low enthalpy geothermal systems are increasingly considered for heating or cooling using groundwater energy combined with heat pumps. The design and the impact of shallow geothermal systems are often ... [more ▼]

Very low enthalpy geothermal systems are increasingly considered for heating or cooling using groundwater energy combined with heat pumps. The design and the impact of shallow geothermal systems are often assessed in a semi-empirical way. It is accepted by most of the private partners but not by environmental authorities deploring a lack of rigorous evaluation of the mid- to long-term impact on groundwater. In view of a more rigorous methodology, heat and dye tracers are used for estimating simultaneously heat transfer and solute transport parameters in an alluvial aquifer. The experimental field site, is equipped with 21 piezometers drilled in alluvial deposits composed of a loam layer overlying a sand and gravel layer constituting the alluvial aquifer. The tracing experiment consisted in injecting simultaneously heated water and a dye tracer in a piezometer and monitoring evolution of groundwater temperature and tracer concentration in 3 control panels set perpendicularly to the main groundwater flow. Results showed drastic differences between heat transfer and solute transport due to the main influence of thermal capacity of the saturated porous medium. The tracing experiment was then simulated using a numerical model and the best estimation of heat transfer and solute transport parameters is obtained by calibrating this numerical model using inversion tools. The developed concepts and tests may lead to real projects of various extents that can be now optimized by the use of a rigorous and efficient methodology at the field scale. [less ▲]

Detailed reference viewed: 40 (5 ULg)
Full Text
Peer Reviewed
See detailUsing multiple point geostatistics for tracer test modeling in a clay-drape environment with spatially variable conductivity and sorption coefficient
Huysmans, Marijke; Orban, Philippe ULg; Cochet, Elke et al

in Mathematical Geosciences (2013), 46(5), 519-537

This study investigates the effect of fine-scale clay drapes on tracer transport. A tracer test was performed in a sandbar deposit consisting of cross-bedded sandy units intercalated with many fine-scale ... [more ▼]

This study investigates the effect of fine-scale clay drapes on tracer transport. A tracer test was performed in a sandbar deposit consisting of cross-bedded sandy units intercalated with many fine-scale clay drapes. The heterogeneous spatial distribution of the clay drapes causes a spatially variable hydraulic conductivity and sorption coefficient. A fluorescent tracer (sodium naphthionate) was injected in two injection wells and groundwater was sampled and analyzed from five pumping wells. To determine (1) whether the fine-scale clay drapes have a significant effect on the measured concentrations and (2) whether application of multiple-point geostatistics can improve interpretation of tracer tests in media with complex geological heterogeneity, this tracer test is analyzed with a local 3D groundwater flow and transport model in which fine-scale sedimentary heterogeneity is modeled using multiple-point geostatistics. To reduce memory needs and calculation time for the multiple-point geostatistical simulation step, this study uses the technique of "direct multiple-point geostatistical simulation of edge properties". Instead of simulating pixel values, model cell edge properties indicating the presence of irregularly-shaped surfaces are simulated using multiple point geostatistical simulations. Results of a sensitivity analysis show under which conditions clay drapes have a significant effect on the concentration distribution. Calibration of the model against measured concentrations from the tracer tests reduces the uncertainty on the clay drape parameters. The calibrated model shows which features of the breakthrough curves can be attributed to the geological heterogeneity of the aquifer and which features are caused by other processes. [less ▲]

Detailed reference viewed: 103 (11 ULg)
Full Text
See detailConception et utilisation de « seepage-meters » artisanaux pour l'étude des interactions «rivière – eaux souterraines » au Burkina Faso
Sauret, Elie ULg; Nitcheu, Martial; Orban, Philippe ULg et al

Conference (2013, September 25)

Situé à l'ouest du Burkina Faso dans la région de Bobo Dioulasso, le bassin du Kou présente un contexte climatique et hydro(géo)logique, favorables à l'accumulation et à la mobilisation d’importantes ... [more ▼]

Situé à l'ouest du Burkina Faso dans la région de Bobo Dioulasso, le bassin du Kou présente un contexte climatique et hydro(géo)logique, favorables à l'accumulation et à la mobilisation d’importantes ressources en eaux souterraines et de surface, en témoigne, les sources de Nasso/guinguette au centre de bassin qui ont un débit d'environ 6000 m3/h. D'un point de vue hydrogéologique, les sources qui constituent les points d’émergences des formations aquifères profonds du bassin se déchargent dans la rivière (Kou) et assurent ainsi sa pérennité tout au long de l’année. D’amont en aval du bassin, le Kou est largement exploité par les agriculteurs installés ça et là de part et d’autre de ses rives. Malheureusement, au cours des vingt dernières années un afflux important de nouveaux agriculteurs a constitué une pression sur les ressources en terres et en eau du bassin, occasionnant une concurrence aigue à tendance conflictuelle entre les différents exploitants agricoles autour de la rivière. Pour mieux caractériser et, quantifier l'évolution dans le temps des ressources en eau du Kou , une série de tests et études hydrogéologiques prenant en compte les deux autres réservoirs : les aquifères sédimentaires profonds et la plaine alluviale déployé tout au long de la rivière, ont été réalisées. Les techniques de mesure directe par seepage meters des volumes d’eau échangés à l’interface «rivière - nappe» ont permis de quantifier localement les transferts d’eau et déceler les directions et sens des échanges entre les différents réservoirs. Les résultats obtenus ont montré qu’il existe des sections où le Kou gagne (1.5 m3/s) ou perd (-0.10 m3/s) de l’eau au profit ou au détriment des eaux souterraines (aquifères sédimentaires profonds et plaine alluviale). Ces résultats ont été validés par des analyses hydrochimiques des échantillons d’eau prélevés. [less ▲]

Detailed reference viewed: 33 (3 ULg)
Full Text
Peer Reviewed
See detailA heat injection and pumping experiment in a gravel aquifer monitored with crosshole electrical resistivity tomography
Hermans, Thomas ULg; Wildemeersch, Samuel ULg; Jamin, Pierre ULg et al

in EarthDoc - Near Surface Geosciences 2013 - 19th European Meeting of Environmental and Engineering Geophysics (2013, September)

Thermal tracing experiments are becoming common in hydrogeology to estimate parameters governing heat transport processes and to study geothermal reservoirs. Electrical resistivity tomography (ERT) has ... [more ▼]

Thermal tracing experiments are becoming common in hydrogeology to estimate parameters governing heat transport processes and to study geothermal reservoirs. Electrical resistivity tomography (ERT) has proven its ability to monitor salt tracer tests, but few studies have investigated its performances in thermal tracing experiments. In this study, we monitor the injection and pumping of heated water using crosshole ERT in a panel crossing the main flow direction. Difference inversion time-lapse images clearly show the heterogeneous pattern of resistivity changes, and thus temperature changes, highlighting the existence of preferential flow paths in the aquifer. Comparison of temperature estimates from ERT and direct measurements in boreholes show the ability of ERT to quantify the temperatures in the aquifer and to draw the breakthrough curves of the thermal tracer with a relative accuracy. Such resistivity data may provide important information to improve hydrogeological models. Our study proves that ERT, especially crosshole ERT, is a reliable tool to follow thermal tracing experiments. It also confirms that ERT should be included to in situ techniques to characterize heat transfer in the subsurface and to monitor geothermal resources exploitation. [less ▲]

Detailed reference viewed: 45 (22 ULg)
Full Text
See detailHeat transfer characterization in a shallow aquifer using heat and dye tracer tests
Wildemeersch, Samuel ULg; Orban, Philippe ULg; Hermans, Thomas ULg et al

Conference (2013, July 22)

Very low enthalpy geothermal systems (open or closed) are increasingly considered for heating or cooling houses and offices using groundwater energy combined with heat pumps. However, the design and the ... [more ▼]

Very low enthalpy geothermal systems (open or closed) are increasingly considered for heating or cooling houses and offices using groundwater energy combined with heat pumps. However, the design and the impact of current shallow geothermal systems are often set up and assessed in a semi-empirical way. In our country, this situation seems accepted by most of the private partners but not by the authorities and responsible administrations evaluating the impact on groundwater with a mid- to long-term perspective. A rigorous methodology is needed based on a physically based estimation of heat transfer parameters. In this study, the simultaneous use of heat and dye tracers allows estimating simultaneously heat transfer and solute transport parameters in an alluvial aquifer. The experimental field site, located near Liege (Belgium), is equipped with 21 piezometers drilled in the alluvial deposits of the Meuse River. These alluvial deposits are composed of a loam layer (3 m) overlying a sand and gravel layer which constitutes the alluvial aquifer (7 m). The tracing experiment consisted in injecting simultaneously heated water and a dye tracer in a piezometer and monitoring the evolution of groundwater temperature and tracer concentration in a series of control panels set perpendicularly to the main groundwater flow. Results showed drastic differences between heat transfer and solute transport due to the main influence of thermal capacity of the saturated porous medium. The tracing experiment was then simulated using a numerical model and the best estimation of heat transfer and solute transport parameters is obtained by calibrating this numerical model using inversion tools. The developed concepts and tests may lead to real projects of various extents that can be now optimized by the use of a rigorous and efficient methodology at the field scale. [less ▲]

Detailed reference viewed: 25 (7 ULg)
Full Text
See detailCoupling heat and salt tracer experiment for the estimation of heat transfer and solute transport parameters
Wildemeersch, Samuel ULg; Jamin, Pierre ULg; Orban, Philippe ULg et al

Conference (2013, April 22)

Geothermal energy is a promising source of energy in the context of sustainable development. Therefore, very low enthalpy geothermal systems (open or closed) are increasingly considered for heating or ... [more ▼]

Geothermal energy is a promising source of energy in the context of sustainable development. Therefore, very low enthalpy geothermal systems (open or closed) are increasingly considered for heating or cooling houses and offices using groundwater energy. However, prior to the development of such systems, a feasibility study and an impact study of the system on groundwater ressources are required. Thereliability of such studies is highly dependent on the quality of the estimation of heat transfer parameters. This highlights the necessity of estimating properly such parameters. The objective of this study is to combine the use of heat and salt tracers to estimate simultaneously heat transfer and solute transport parameters in an alluvial aquifer. Additionally, coupling heat and salt tracing experiments is particularly useful for comparing heat transfer and solute transport processes occurring in the subsurface. An experimental field site, located near Liege (Belgium), is equipped with 21 piezometers drilled in the alluvial deposits of the Meuse River. These alluvial deposits are composed of a loess layer (3 m) overlying a sand and gravel layer which constitutes the alluvial aquifer (7 m). The coupled tracing experiment consists in injecting simultaneously heated water and salt in a piezometer and monitoring the evolution of groundwater temperature and salt concentration in a series of control panels set perpendicularly to groundwater flow. This coupled tracing experiment is then simulated using a numerical model. The estimation of heat transfer and solute transport parameters is obtained by calibrating this numerical model using inversion tools. The present study proposes a methodology coupling heat and salt tracing experiment for estimating heat transfer parameters at the field scale. Furthermore, this coupled tracing experiment shows that the comportment of heat and solute in the subsurface presents key differences. [less ▲]

Detailed reference viewed: 62 (23 ULg)