References of "Nguyen, Frédéric"
     in
Bookmark and Share    
Peer Reviewed
See detailRhodococcus erythropolis, a good candidate for an in-situ bioaugmentation starter
Masy, Thibaut ULg; Caterina, David; Tromme, Olivier et al

Conference (2014, March 05)

In-situ bioremediation is as a green and cheap process to clean soils from pollution compared to other techniques which often imply the excavation of soils. Amongst the bacteria used, Rhodococcus ... [more ▼]

In-situ bioremediation is as a green and cheap process to clean soils from pollution compared to other techniques which often imply the excavation of soils. Amongst the bacteria used, Rhodococcus erythropolis appears as one of the best candidates for bioaugmentation. In fact, this species forms biofilms and produces biosurfactants to solubilize hydrocarbons, which are consequently more available for this bacterium and the endogenous oil-degrading flora. Moreover, its large genome allows the degradation of various persistent pollutants, such as polyaromatic hydrocarbons or sulfur-containing hydrocarbons. In addition to these benefits, our strain Rhodococcus erythropolis T902.1, isolated from a dried polluted soil, resists to desiccation during industrial process or drought, and maintains its biodegradation capabilities. To test this strain in field conditions, a bioaugmentation experiment at a pilot scale was initiated in partnership with the Department ArGEnCo, Applied Geophysics of the University of Liège. The pilot contains 2 m3 of sand, in which a vertical lens of highly polluted clayey soil (7200 mg of hydrocarbons/g of dry weight) was inserted. During the first three months, 75% of the hydrocarbons content was degraded, whereas a previous biostimulation experiment with KNO3 and H2O2 did not lead to any depletion of the pollutant. This degradation was correlated with the increase of total and specific microorganisms (by a factor 13 and 10 respectively) and the almost complete NO3- consumption (from 50 to nearly 0 mg/L). Furthermore, electrical resistivity tomography images of the contaminated lens also depicted a switch in the bulk conductivity values that does not correspond to the trend followed by the aqueous conductivity. It could be explained by the implementation of the injected bacteria and their production of hydrophobic biosurfactants desorbing hydrocarbons from soil particles. This assumption is strengthened by the fact that low concentrations of hydrocarbons were detected in piezometers downstream of the contaminated area. Further experiments will be carried out at a smaller scale to validate this hypothesis. On the one hand, we are currently designing a protocol to follow the biofilm formation by Rhodococcus erythropolis T902.1 with spectral induced polarization (SIP) signature in sand columns of 1.5 L. On the other hand, the analysis of biosurfactants will be performed in liquid cultures containing diesel oil, to characterize the hydrophobicity developed by the strain in presence of a common but complex pollutant. To conclude, all these characteristics showed by Rhodococcus erythropolis T902.1 make it an ideal candidate for the production of a bioremediation starter to quickly treat hydrocarbons-polluted soils. . Furthermore, the better comprehension of geophysical signatures associated with such a process may lead in the future to use them as a low-cost monitoring tool for a better visualization of active remediation zones. [less ▲]

Detailed reference viewed: 16 (0 ULg)
Full Text
See detailVadose zone studies at an industrial contaminated site: the vadose zone monitoring system and cross-hole geophysics
Fernandez de Vera, Natalia ULg; Pena Hernandez, Juan Angel; Beaujean, Jean ULg et al

Scientific conference (2014, March 05)

Oral presentation of the PhD project at the ENVITAM PhD day in Louvain-la-Neuve

Detailed reference viewed: 23 (6 ULg)
Full Text
See detailVadose zone studies at an industrial contaminated site: the vadose zone monitoring system and cross-hole geophysics
Fernandez de Vera, Natalia ULg; Pena Hernandez, Juan; Beaujean, Jean ULg et al

Scientific conference (2014, January 15)

Oral presentation for the PhD geoscience day at the University of Liege.

Detailed reference viewed: 18 (7 ULg)
See detailUtilisation de la géostatistique multi-points pour l'intégration de données de tomographie de résistivité électrique aux modèles hydrogéologiques
Hermans, Thomas ULg; Scheidt, Céline; Caers, Jef et al

Scientific conference (2014, January 15)

Detailed reference viewed: 48 (14 ULg)
Full Text
Peer Reviewed
See detailDétermination des propriétés de couches dans le béton à l'aide d'un géoradar commercial à hautes fréquences: approche pic-à-pic et analyse fréquentielle du coefficient de réflexion
Van der Wielen, Audrey ULg; Nguyen, Frédéric ULg; Courard, Luc ULg

in Annales du Bâtiment et des Travaux Publics (2014)

The Ground Penetrating Radar (GPR) is an efficient tool for the non-destructive inspection of concrete structures. It is widely used for the detection of rebars or humid zones or for evaluating the ... [more ▼]

The Ground Penetrating Radar (GPR) is an efficient tool for the non-destructive inspection of concrete structures. It is widely used for the detection of rebars or humid zones or for evaluating the thickness of elements. But when an element contains a thin layer, the radar waves are submitted to multiple reflections on the interfaces and the layer appears in the radargram as a single reflection, whose detailed analysis can allow determining the thickness and the permittivity of the thin layer. Two approaches were considered in this paper. In the first one, the analysis is based on the peak-to-peak reflection amplitude. The second approach uses a frequency analysis of the reflection coefficient, whose amplitude and phase can then be calculated for several frequencies. With this method, the thickness and permittivity of the layer can in theory be simultaneously determined. Both methods were numerically validated through finite difference simulations and experimentally tested on concrete samples containing an air layer of variable thickness. We showed that the frequency analysis allowed to reach a higher precision in the parameters estimation for a limited additional computing cost. The method efficiency depends on the conditions and is optimal for layers with a high permittivity presenting a large contrast with the matrix. [less ▲]

Detailed reference viewed: 44 (2 ULg)
Full Text
Peer Reviewed
See detailCoupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers
Wildemeersch, Samuel ULg; Jamin, Pierre ULg; Orban, Philippe ULg et al

in Journal of Contaminant Hydrology (2014), 169

Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore ... [more ▼]

Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54 MJ/m3/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for estimating the entire set of heat transfer parameters and their spatial distribution by inverse modeling. [less ▲]

Detailed reference viewed: 42 (19 ULg)
Full Text
Peer Reviewed
See detailGeophysical Methods for Monitoring Temperature Changes in Shallow Low Enthalpy Geothermal Systems
Hermans, Thomas ULg; Nguyen, Frédéric ULg; Robert, Tanguy et al

in Energies (2014), 7

Low enthalpy geothermal systems exploited with ground source heat pumps or groundwater heat pumps present many advantages within the context of sustainable energy use. Designing, monitoring and ... [more ▼]

Low enthalpy geothermal systems exploited with ground source heat pumps or groundwater heat pumps present many advantages within the context of sustainable energy use. Designing, monitoring and controlling such systems requires the measurement of spatially distributed temperature fields and the knowledge of the parameters governing groundwater flow (permeability and specific storage) and heat transport (thermal conductivity and volumetric thermal capacity). Such data are often scarce or not available. In recent years, the ability of electrical resistivity tomography (ERT), self-potential method (SP) and distributed temperature sensing (DTS) to monitor spatially and temporally temperature changes in the subsurface has been investigated. We review the recent advances in using these three methods for this type of shallow applications. A special focus is made regarding the petrophysical relationships and on underlying assumptions generally needed for a quantitative interpretation of these geophysical data. We show that those geophysical methods are mature to be used within the context of temperature monitoring and that a combination of them may be the best choice regarding control and validation issues. [less ▲]

Detailed reference viewed: 72 (22 ULg)
Full Text
Peer Reviewed
See detailDetection of near-field, low permittivity layers with Ground Penetrating Radar: analytical estimation of the reflection coefficient
Van der Wielen, Audrey; Courard, Luc ULg; Nguyen, Frédéric ULg

in LAMBOT, Sébastien (Ed.) Proceedings of 15th International Conference on ground Penetrating Radar (2014)

The reflection coefficient of GPR waves encountering embedded thin layers is commonly estimated using a plane wave, far field approximation. But when the thin layer is situated in the near field of the ... [more ▼]

The reflection coefficient of GPR waves encountering embedded thin layers is commonly estimated using a plane wave, far field approximation. But when the thin layer is situated in the near field of the antenna, the spherical nature of the waves and the possible propagation of a lateral wave into the layer may have a strong influence on the measured reflected amplitude. In this work, we studied through 2D FDTD simulations the behavior of a radar wave interacting with thin layers of different thicknesses. The snapshots and radargrams showed a large influence of the layer thickness on the wave propagation. For the very thin layers, the evanescent wave plays a major role and the plane wave approximation gives a good estimation of the reflection coefficient. For thicker layers, the specific inclination of each multiple reflection has to be taken into account, as well as the lateral wave propagation. On the basis of these observations, we determined which analytical method should be used for the analytical prediction of the reflection coefficient, as a function of the layer thickness. [less ▲]

Detailed reference viewed: 20 (0 ULg)
Full Text
Peer Reviewed
See detailDétermination des propriétés de couches minces dans le béton à l’aide d’un géoradar commercial à hautes fréquences: approche pic-à-pic et analyse fréquentielle du coefficient de réflexion
Van der Wielen, Audrey; Courard, Luc ULg; Nguyen, Frédéric ULg

in Balayssac, Jean-Paul (Ed.) Compte-rendus de Diagnobeton 2014 (2014)

The Ground Penetrating Radar (GPR) is an efficient tool for the non-destructive inspection of concrete structures. It is widely used for the detection of rebars or humid zones or for evaluating the ... [more ▼]

The Ground Penetrating Radar (GPR) is an efficient tool for the non-destructive inspection of concrete structures. It is widely used for the detection of rebars or humid zones or for evaluating the thickness of elements. But when an element contains a thin layer, the radar waves are submitted to multiple reflections on the interfaces and the layer appears in the radargram as a single reflection, whose detailed analysis can allow determining the thickness and the permittivity of the thin layer. Two approaches were considered in this paper. In the first one, the analysis is based on the peak-to-peak reflection amplitude. The second approach uses a frequency analysis of the reflection coefficient, whose amplitude and phase can then be calculated for several frequencies. With this method, the thickness and permittivity of the layer can in theory be simultaneously determined. Both methods were numerically validated through finite difference simulations and experimentally tested on concrete samples containing an air layer of variable thickness. We showed that the frequency analysis allowed to reach a higher precision in the parameters estimation for a limited additional computing cost. The method efficiency depends on the conditions and is optimal for layers with a high permittivity presenting a large contrast with the matrix. [less ▲]

Detailed reference viewed: 15 (0 ULg)
Full Text
Peer Reviewed
See detailAssessing the Probability of Training Image-Based Geological Scenarios Using Geophysical Data
Hermans, Thomas ULg; Caers, Jef; Nguyen, Frédéric ULg

in Pardo-Iguzquiza, Eulogio; Guardiola-Albert, Carolina; Heredia, Javier (Eds.) et al Mathematics of Planet Earth - Proceedings of the 15th Annual Conference of the International Association for Mathematical Geosciences (2014)

In multiple-point statistics (MPS), the construction of training im-ages (TIs) is one of the most critical steps. Reliable geological studies may not always be available to depict with certainty what ... [more ▼]

In multiple-point statistics (MPS), the construction of training im-ages (TIs) is one of the most critical steps. Reliable geological studies may not always be available to depict with certainty what geological patterns or heterogeneity are present. In this context, geophysical techniques may provide additional information to reduce the possible large uncertainty in the understanding of prior geological scenarios. To overcome this problem, we developed a methodology to verify the consistency of geophysical data with independently-built TIs representing different plausible geological scenarios. If a TI is deemed consistent with the field geophysical survey, then in a sec-ond step we calculate a likelihood probability for each consistent TI. Our methodology starts by creating subsurface models with each TI. From these models we create synthetic geophysical data and from this synthetic data, synthetic inverted models. These models are now compared with a single inverted model obtained from the field sur-vey, allowing for our definition of what is “consistent”. To that ex-tent, we calculate the Euclidean distance between any two inverted models as well as field data and visualize the results in a 2D or 3D space using multidimensional scaling (MDS). With this technique, it is possible to verify if field cases fall in the distribution represented by synthetic cases, and thus are consistent with them. In a second step, we present a cluster analysis on the MDS-map to highlight which parameters are the most sensitive for the construction of TI. Based on this analysis, a probability of each geological scenario is computed through kernel smoothing of the densities in reduced pro-jected metric space. This approach was tested using electrical resistivity tomography as geophysical data to analyze TI scenarios for the Meuse alluvial aqui-fer (Belgium), where the lack of reliable sedimentological data lead to the definition of a multitude of geological scenarios, hence TIs. [less ▲]

Detailed reference viewed: 54 (21 ULg)
Full Text
Peer Reviewed
See detailA modified DOI-based method to statistically estimate the depth of investigation of dc resistivity surveys
Deceuster, J.; Etienne, A.; Robert, Tanguy et al

in Journal of Applied Geophysics (2014), 103

Several techniques are available to estimate the depth of investigation or to identify possible artifacts in dc resistivity surveys. Commonly, the depth of investigation (DOI) is mainly estimated by using ... [more ▼]

Several techniques are available to estimate the depth of investigation or to identify possible artifacts in dc resistivity surveys. Commonly, the depth of investigation (DOI) is mainly estimated by using an arbitrarily chosen cut-off value on a selected indicator (resolution, sensitivity or DOI index). Ranges of cut-off values are recommended in the literature for the different indicators. However, small changes in threshold values may induce strong variations in the estimated depths of investigation. To overcome this problem, we developed a new statistical method to estimate the DOI of dc resistivity surveys based on a modified DOI index approach. This method is composed of 5 successive steps. First, two inversions are performed by using different resistivity reference models for the inversion (0.1 and 10 times the arithmetic mean of the logarithm of the observed apparent resistivity values). Inversion models are extended to the edges of the survey line and to a depth range of three times the pseudodepth of investigation of the largest array spacing used. In step 2, we compute the histogram of a newly defined scaled DOI index. Step 3 consists of the fitting of the mixture of two Gaussian distributions (G1 and G2) to the cumulative distribution function of the scaled DOI index values. Based on this fitting, step 4 focuses on the computation of an interpretation index (II) defined for every cell j of the model as the relative probability density that the cell j belongs to G1, which describes the Gaussian distribution of the cells with a scaled DOI index close to 0.0. In step 5, a new inversion is performed by using a third resistivity reference model (the arithmetic mean of the logarithm of the observed apparent resistivity values). The final electrical resistivity image is produced by using II as alpha blending values allowing the visual discrimination between well-constrained areas and poorly-constrained cells. The efficiency of the proposed methodology is assessed on synthetic and field data. By using synthetic benchmark analysis, we demonstrate that the selected well-constrained cells are well-reconstructed in size and shape as well as in resistivity contrasts. Compared to the existing image appraisal tools, the proposed statistical method allows the identification of the statistically well-constrained cells of the model without using any arbitrary cut-off value. Using this statistical method in combination with the resolution, when interpreting dc resistivity surveys, provides the geophysicist valuable information to avoid over- or misinterpretation of ERT images. [less ▲]

Detailed reference viewed: 16 (3 ULg)
Peer Reviewed
See detailCoupling of hydrogeological models with hydrogeophysical data to characterize seawater intrusion and shallow geothermal systems
Beaujean, Jean ULg; Kemna, Andreas; Engesgaard, Peter et al

Conference (2013, December 12)

While coastal aquifers are being stressed due to climate changes and excessive groundwater withdrawals require characterizing efficiently seawater intrusion (SWI) dynamics, production of geothermal energy ... [more ▼]

While coastal aquifers are being stressed due to climate changes and excessive groundwater withdrawals require characterizing efficiently seawater intrusion (SWI) dynamics, production of geothermal energy is increasingly being used to hinder global warming. To study these issues, we need both robust measuring technologies and reliable predictions based on numerical models. SWI models are currently calibrated using borehole observations. Similarly, geothermal models depend mainly on the temperature field at few locations. Electrical resistivity tomography (ERT) can be used to improve these models given its high sensitivity to TDS and temperature and its relatively high lateral resolution. Inherent geophysical limitations, such as the resolution loss, can affect the overall quality of the ERT images and also prevent the correct recovery of the desired hydrochemical property. We present an uncoupled and coupled hydrogeophysical inversion to calibrate SWI and thermohydrogeologic models using ERT. In the SWI models, we demonstrate with two synthetic benchmarks (homogeneous and heterogeneous coastal aquifers) the ability of cumulative sensitivity-filtered ERT images using surface-only data to recover the hydraulic conductivity. Filtering of ERT-derived data at depth, where resolution is poorer, and the model errors make the dispersivity more difficult to estimate. In the coupled approach, we showed that parameter estimation is significantly improved because regularization bias is replaced by forward modeling only. Our efforts are currently focusing on applying the uncoupled/coupled approaches on a real life case study using field data from the site of Almeria, SE Spain. In the thermohydrogeologic models, the most sensitive hydrologic parameters responsible for heat transport are estimated from surface ERT-derived temperatures and ERT resistance data. A real life geothermal experiment that took place on the Campus De Sterre of Ghent University, Belgium and a synthetic case are tested. They consist in a thermal injection and storage of water in a shallow sandy aquifer. The use of a physically-based constraint accounting for the difference in conductivity between the formation and the tap injected water and based on the hydrogeological model calibrated first on temperatures is necessary to improve the parameter estimation. Results suggest that time-lapse ERT data may be limited but useful information for estimating groundwater flow and transport parameters for both the convection and conduction phases. [less ▲]

Detailed reference viewed: 60 (7 ULg)
Full Text
See detailMonitoring temperature changes during heat tracing experiments using electrical resistivity tomography
Hermans, Thomas ULg; Wildemeersch, Samuel ULg; Nguyen, Frédéric ULg

Conference (2013, December 06)

Thermal tracing experiments are becoming common in hydrogeology to estimate parameters governing heat transport processes and to study geothermal reservoirs. Electrical resistivity tomography (ERT) has ... [more ▼]

Thermal tracing experiments are becoming common in hydrogeology to estimate parameters governing heat transport processes and to study geothermal reservoirs. Electrical resistivity tomography (ERT) has proven its ability to monitor salt tracer tests, but few studies have investigated its performances, both qualitatively and quantitatively, in thermal tracing experiments. In this study, we monitored a heat injection and pumping experiment in an alluvial aquifer using both surface and crosshole ERT. The data sets of the surface profile, located along the main direction of flow, are distorted during injection by an electrical short-circuit through the external pumping-heating-injection experimental set-up. Current is flowing outside the subsurface leading to bad data for electrode dipoles located near the pumping and injection wells. The crosshole ERT panel is perpendicular to the main direction of flow. Difference inversion time-lapse images clearly show a preferential flow path in the bottom of the aquifer related to the presence of a coarse and clean gravel layer. Direct temperature measurements are available in control piezometers during the experiment to validate the ERT-derived temperatures and confirm the spatial pattern of temperature observed with ERT. Breakthrough curves are correctly retrieved in time and difference of 10 to 20% are observed for temperature estimation. The latter requires site-specific petrophysical laws and chemical stability assumptions that must be carefully verified. Our study proves that ERT, especially crosshole ERT, is a reliable tool to follow thermal tracing experiments but also to characterize heat transfer in the subsurface and to monitor geothermal resource exploitations. We also show that surface ERT may be impacted by the survey layout in unsuspected ways. [less ▲]

Detailed reference viewed: 100 (3 ULg)
Full Text
See detailReliability of resistivity-derived temperature: insights from laboratory measurements
Robert, Tanguy ULg; Hermans, Thomas ULg; Dumont, Gaël ULg et al

Conference (2013, December 06)

This contribution consists in studying the reliability of resistivity-derived temperature, for example from time-lapse electrical resistivity tomography (ERT) surveys. The idea of using temperature as a ... [more ▼]

This contribution consists in studying the reliability of resistivity-derived temperature, for example from time-lapse electrical resistivity tomography (ERT) surveys. The idea of using temperature as a quantitative tracer is growing in the hydrogeophysical community, especially to simulate geo/hydrothermal systems. However, plenty of physico-chemical processes are influenced by temperature and most of them impact directly resistivity measurements. Therefore, one needs to take them into account to retrieve quantitative temperature estimates from resistivity measurements but, up to now, it is seldom the case. The experiment we conducted consisted in simulating an ERT monitoring of heat storage in a sandy aquifer. We show that using experimental relationships between fluid electrical conductivity and temperature alone does not allow reliable temperature estimates, simply because rock-water interactions are neglected. Worst, from a certain temperature (45°C here), the bulk resistivity starts to increase with temperature although this is not expected from the experimental law. Chemical analyses made on water samples collected during the experiment highlight the importance of accounting chemical reactions (e.g. calcite precipitation with increasing temperature) occurring when temperature changes as well as their kinetics. Finally, other parameters as surface conductivity cannot always be neglected when estimating temperature from resistivity measurements. This means that retrieving reliable temperatures from bulk resistivity measurements (e.g. time-lapse ERT) requires the knowledge of water mineralization as well as the rock / soil mineralogy in order to fully integrate physico-chemical reactions between groundwater and the host rock, for example with a joint inversion scheme. [less ▲]

Detailed reference viewed: 37 (9 ULg)
Full Text
See detailMinimum gradient support and geostatistics regularization approaches for inverting time-lapse data
Nguyen, Frédéric ULg; Hermans, Thomas ULg; Robert, Tanguy ULg

Conference (2013, December 05)

Inversion of time-lapse resistivity data allows obtaining ‘snapshots’ of changes occurring in monitored systems for applications such as aquifer storage, site remediation or tracer tests. Based on these ... [more ▼]

Inversion of time-lapse resistivity data allows obtaining ‘snapshots’ of changes occurring in monitored systems for applications such as aquifer storage, site remediation or tracer tests. Based on these snapshots, one can infer qualitative information on the location and morphology of changes occurring in the subsurface but also quantitative estimates on the degree of changes in certain property such as temperature or total dissolved solid content. Analysis of these changes can provide direct insight into flow and transport processes and controlling parameters. However, the reliability of the analysis is dependent on survey geometry, measurement schemes, data error, or regularization. Except regularization, survey design parameters may be optimized prior to the monitoring survey. Regularization, on the other hand, may be chosen depending on available information collected during the monitoring. Common approaches consider smoothing model changes both in space and/or time. We here propose to use two alternative regularization approaches which may be better suited to invert time-lapse data. The first approach is the minimum gradient support (MGS) regularization, which focus the changes in tomograms snapshots. MGS will limit the occurrences of changes in electrical resistivity but will also restrict the variations of these changes inside the different zones. The second approach is based on geostatistics and requires first to derive variogram parameters for the model changes. In this contribution, we demonstrate the benefits and limitations of these regularization approaches to time-lapse data on numerical benchmarks and three case studies. [less ▲]

Detailed reference viewed: 66 (9 ULg)
See detail3D ERT monitoring of the reactivation of waste biodegradation with fresh leachate injection
Dumont, Gaël ULg; Robert, Tanguy ULg; Pilawski, Tamara et al

Conference (2013, December 04)

The aim of this study is to monitor (bio) physical processes occurring in a landfill. The experiment consists in injecting leachate towards a drain in unsaturated and not yet digested waste to reactivate ... [more ▼]

The aim of this study is to monitor (bio) physical processes occurring in a landfill. The experiment consists in injecting leachate towards a drain in unsaturated and not yet digested waste to reactivate (or activate) waste biodegradation. The target is the first 15 meters of the studied landfill subsurface. The visualization of the wet front arrival (short term effect) is crucial because we want to ensure that waste is entirely humidified to allow the reactivation of waste digestion. The second process is a long term effect consisting in the increase of the internal temperature of the landfill which is synonymous of the reactivation of biodegradation processes. We use 3D time-lapse ERT on a monthly basis to capture the decrease of electrical resistivity related to the increasing temperature. We also collect ground truth data, including distributed temperatures in a borehole to validate results. For short term effects, we monitored the wet front arrival with three 2D ERT profiles composing the 3D image, during an entire day. Preliminary results, corroborated by ground truth data, show that leachate flow in anisotropic (more rapid horizontally than vertically). So far, waste was completely humidified and slight changes of temperature occurred. [less ▲]

Detailed reference viewed: 24 (6 ULg)
Peer Reviewed
See detailGeophysical characterisation of a former waste disposal site in the context of landfill mining
Dumont, Gaël ULg; Robert, Tanguy ULg; Pilawski, Tamara et al

in EarthDoc - Near Surface Geoscience 2013 – 19th European Meeting of Environmental and Engineering Geophysics (2013, September 11)

Detailed reference viewed: 37 (15 ULg)
Peer Reviewed
See detail3D ERT Monitoring of the Reactivation of Waste Biodegradation with Fresh Leachate Injection
Robert, Tanguy ULg; Dumont, Gaël ULg; Pilawski, Tamara ULg et al

in EarthDoc - Near Surface Geoscience 2013 – 19th European Meeting of Environmental and Engineering Geophysics (2013, September 11)

Detailed reference viewed: 30 (11 ULg)