References of "Mouithys-Mickalad, Ange"
     in
Bookmark and Share    
See detailGlucose-dependent metabolic reprogramming in HDAC5-depleted cancer cells
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2014, May 19)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glycolysis and glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 26 (0 ULg)
See detailGlucose-dependent metabolic reprogramming in HDAC5-depleted cancer cells
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2014, April 25)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival (PEIXOTO et al., 2012). The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glycolysis and glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. Acknowledgements This work fiancially suppoted by a grant of F.R.S .-FNRS (contract n° 7.4515.12F). E Hendrick is recipient of a Televie fellowship. References PEIXOTO et al., (2012) Cell Death and Differentiation. 7:1239-52. [less ▲]

Detailed reference viewed: 10 (1 ULg)
See detailComplex I Mitochondrial Dysfunction in HDAC5-depleted Cancer Cells Induces Glucose-dependent Metabolic Reprogramming
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2014, February 01)

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1. Aims : The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Methods and results : Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of NDUFB5, a subunit of the complex I of the mitochondrial respiratory chain through modulation of mRNA stability. HDAC5 depletion-induced NDUFB5 downregulation causes a significant increase of ROS production and induces uncoupled mitochondrial respiration. In addition, this HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Conclusions : Our study demonstrated for the first time that specific HDAC5 inhibition induces alteration of NDUFB5 gene expression by altering mRNA stability and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. [less ▲]

Detailed reference viewed: 31 (1 ULg)
See detailComplex I Mitochondrial Dysfunction in HDAC5-depleted Cancer Cells Induces Glucose-dependent Metabolic Reprogramming
Hendrick, Elodie ULg; Peixoto, Paul ULg; Matheus, Nicolas ULg et al

Poster (2014, January 27)

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1. Aims : The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Methods and results : Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of NDUFB5, a subunit of the complex I of the mitochondrial respiratory chain through modulation of mRNA stability. HDAC5 depletion-induced NDUFB5 downregulation causes a significant increase of ROS production and induces uncoupled mitochondrial respiration. In addition, this HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Conclusions : Our study demonstrated for the first time that specific HDAC5 inhibition induces alteration of NDUFB5 gene expression by altering mRNA stability and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailNDS27 combines the effect of curcumin lysinate and hydroxypropyl-β-cyclodextrin to inhibit equine PKCδ and NADPH oxidase involved in the oxidative burst of neutrophils
Derochette, Sandrine ULg; Mouithys-Mickalad, Ange ULg; Franck, Thierry ULg et al

in FEBS Open Bio (2014), 4(0), 1021-1029

Polymorphonuclear neutrophils (PMNs) are involved in host defence against infections by the production of reactive oxygen species (ROS), but excessive PMN stimulation is associated with the development of ... [more ▼]

Polymorphonuclear neutrophils (PMNs) are involved in host defence against infections by the production of reactive oxygen species (ROS), but excessive PMN stimulation is associated with the development of inflammatory diseases. After appropriate stimuli, protein kinase C (PKC) triggers the assembly of NADPH oxidase (Nox2) which produces superoxide anion (O2●-), from which ROS derive. The therapeutic use of polyphenols is proposed to lower ROS production by limiting Nox2 and PKC activities. The purpose of this study was to compare the antioxidant effect of NDS27 and NDS28, two water-soluble forms of curcumin lysinate respectively complexed with hydroxypropyl-β-cyclodextrin (HPβCD) and γ-cyclodextrin (γ-CD), on the activity of Nox2 and PKCδ, involved in the Nox2 activation pathway. Our results, showed that NDS27 is the best inhibitor for Nox2 and PKCδ. This was illustrated by the combined effect of HPβCD and curcumin lysinate: HPβCD, but not γ-CD, improved the release of curcumin lysinate and its exchange against lipid or cholesterol as demonstrated by the lipid coloration with Oil red O, the extraction of radical lipophilic probes recorded by ESR and the HPLC measurements of curcumin. HPβCD not only solubilised and transported curcumin, but also indirectly enhanced its action on both PKC and Nox2 activities. The modulatory effect of NDS27 on the Nox2 activation pathway of neutrophils may open therapeutic perspectives for the control of pathologies with excessive inflammatory reactions. [less ▲]

Detailed reference viewed: 85 (15 ULg)
Full Text
Peer Reviewed
See detailEffect of inhaled hysrosoluble curcumin in lipopolysaccharide-induced lung neutrophilia in horses
Sandersen, Charlotte ULg; Cerri, Simona ULg; Franck, Thierry ULg et al

in Dorothy Russel Havemeyer Foundation IAD Workshop (2014)

Detailed reference viewed: 32 (12 ULg)
See detailHDAC5 depletion Decreases NDUFB5 Subunit of Mitochondrial Complex- I leading to Glucose-dependent Metabolic Reprogrammation
Hendrick, Elodie ULg; Matheus, Nicolas ULg; Peixoto, Paul ULg et al

Poster (2013, December 05)

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1. Aims : The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Methods and results : Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of NDUFB5, a subunit of the complex I of the mitochondrial respiratory chain through modulation of mRNA stability. HDAC5 depletion-induced NDUFB5 downregulation causes a significant increase of ROS production and induces uncoupled mitochondrial respiration. In addition, this HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Conclusions : Our study demonstrated for the first time that specific HDAC5 inhibition induces alteration of NDUFB5 gene expression by altering mRNA stability and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. [less ▲]

Detailed reference viewed: 24 (0 ULg)
Full Text
Peer Reviewed
See detailEffect of different kinds of anoxia/reoxygenation on the mitochondrial function and the free radicals production of cultured primary equine skeletal myoblasts.
Ceusters, Justine ULg; Mouithys-Mickalad, Ange ULg; Franck, Thierry ULg et al

in Research in Veterinary Science (2013), 95

Horses are outstanding athletes, performing in many different disciplines involving different kinds of efforts and metabolic responses. Depending on exercise intensity, their skeletal muscle oxygenation ... [more ▼]

Horses are outstanding athletes, performing in many different disciplines involving different kinds of efforts and metabolic responses. Depending on exercise intensity, their skeletal muscle oxygenation decreases, and the reperfusion at cessation of the exercise can cause excessive production of free radicals. This study on cultured primary equine myoblasts investigated the effect of different kinds of anoxia/reoxygenation (A/R) on routine respiration, mitochondrial complex I specific activity and free radicals production. Our data revealed that short cycles of A/R caused a decrease of all the parameters, opposite to what a single long period of anoxia did. A preconditioning-like effect could explain our first pattern of results whereas mild uncoupling could be more appropriate for the second one. Anyway, it seems that mitochondrial complex I could play a major role in the regulation of the balance between metabolic and antioxidant protection of the muscular function of athletic horses. [less ▲]

Detailed reference viewed: 51 (13 ULg)
See detailComplexe I mitochondrial dysfunction in HDAC5 depleted cancer cells induces glucose-dependent metabolic reprogrammation.
Hendrick, Elodie ULg; Matheus, Nicolas ULg; Peixoto, Paul ULg et al

Poster (2013, September 13)

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1. Aims: The goal of this study is to further understand the metabolic response of cancer cells to HDAC5 depletion. Results: Screening transcriptomic study demonstrated that HDAC5 depletion induces a deregulation of genes encoding subunits of complex I of the mitochondrial respiratory chain leading to a significant increase of ROS production and inducing uncoupled mitochondrial respiration. In addition, this HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Conclusion: Our study demonstrated for the first time that specific HDAC5 inhibition induces alteration of gene expression encoding mitochondrial proteins in cancer cells and provide insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 9 (0 ULg)
Peer Reviewed
See detailAN IMMUNOLOGICAL METHOD TO COMBINE THE MEASUREMENT OF ACTIVE AND TOTAL HUMAN MYELOPEROXIDASE ON THE SAME SAMPLE FROM A COMPLEX MEDIUM
Franck, Thierry ULg; MINGUET, Grégory ULg; Mossay, Pierre et al

Conference (2013, September 12)

Active neutrophil myeloperoxidase (MPO) is a powerful producer of oxidant molecules in acute or chronic inflammation, and it is essential to measure its activity in biological samples. We combined two ... [more ▼]

Active neutrophil myeloperoxidase (MPO) is a powerful producer of oxidant molecules in acute or chronic inflammation, and it is essential to measure its activity in biological samples. We combined two immunological techniques, the SIEFED (specific immunologic extraction followed by enzymatic detection) and an ELISA, to measure the active and total contents of human MPO on the same sample and with the same calibration curve, to define an accurate ratio between the active and total enzyme. After the extraction of MPO from aqueous or biological samples by immobilized anti-MPO antibodies followed by a washing to eliminate unbound material, the active and the total contents of the enzyme were sequentially measured without interferences (patent: EP2017351-B1, 2010). Compared to a classical sandwich ELISA, there is one additional step corresponding to the in situ measurement of MPO activity, but this step does not affect the following measurement of the total MPO content. After validation, the combined technique was applied to a whole blood model of in vitro stimulation with phorbol-myristate-acetate (PMA), cytochalasin B/N-formyl-methionyl-leucyl-phenyl-alanine (CB/fMLP) or lipopolysaccharide/ tumor necrosis factor-alpha (LPS/TNF-α) (n=9). The active/total MPO ratio in whole blood reached 0.267±0.126 for non-stimulated condition and was significantly (p<0.05) higher for PMA (0.360±0.106), CB/fMLP (0.380±0.113) and LPS/TNF-α (0.432±0.124) stimulated conditions. These different ratios highlight the real oxidant potential of MPO, which depends on the stimulating conditions, witness of what could happen in pathological situations with diagnostic purpose. The combined SIEFED/ELISA method also appeared as a powerful tool to screen potential inhibitors that could interact directly with the enzyme, either on its active site or on another key position. [less ▲]

Detailed reference viewed: 95 (11 ULg)
Full Text
See detailA water-soluble salt of curcumin (NDS27) inhibits myeloperoxidase and NADPH oxidase activities, two major enzymes of neutrophils.
Derochette, Sandrine ULg; Mouithys-Mickalad, Ange ULg; Deby-Dupont, Ginette et al

Poster (2013, September 11)

Neutrophils (PMNs) produce reactive oxygen species (ROS) to kill pathogenic agents. After appropriate stimulation, leading to the activation of protein kinase C (PKC), the cytosolic subunits of the NADPH ... [more ▼]

Neutrophils (PMNs) produce reactive oxygen species (ROS) to kill pathogenic agents. After appropriate stimulation, leading to the activation of protein kinase C (PKC), the cytosolic subunits of the NADPH oxidase (Nox2) are phosphorylated and translocated to the membrane flavocytochrome b558, forming the active enzyme which produces superoxide anion (O2●-). From O2●- derives H2O2 used by the PMNs myeloperoxidase (MPO) to form strong oxidant species. Many human and animal pathologies with fatal issue are associated with uncontrolled activation of PMNs. The modulation of enzymes implied in ROS production is thus a primary target to manage excessive inflammatory events. For this purpose, we evaluated the effects of NDS27, a water-soluble salt of curcumin combined with hydroxypropyl-β-cyclodextrin, on the activities of PKC, Nox2 and MPO. PKC activation was determined by western blotting with specific antibodies against phosphorylated PKC in extracts from PMNs after their incubation or not with NDS27. A cell-free assay was used to evaluate the effect of NDS27 before or after the assembly of Nox2 subunits. MPO activity was tested by the SIEFED technique in which NDS27 was pre-incubated with the enzyme and discarded before its activity measurement. An inhibition of PKC phosphorylation and Nox2 activity were observed at respectively 10-4 and 10-5 M of NDS27. The Nox2 inhibition was more pronounced when NDS27 was added before the assembly stimulation, suggesting a direct action of NDS27 on the subunits translocation. NDS27 also dose-dependently decreased the activity of MPO (21 % at 10-5 M), indicating an interaction with the enzyme structure. Our results demonstrated that NDS27 is a potent inhibitor of the two major enzymes responsible for ROS production in PMNs, and also acts on the activation cascade of Nox2. The modulatory effect of NDS27 towards the oxidant activity of PMNs opens therapeutic perspectives to control pathologies with excessive inflammatory reactions. [less ▲]

Detailed reference viewed: 106 (13 ULg)
Full Text
Peer Reviewed
See detailDisruption in energy metabolism and mitochondrial function in a cellular model of inflammation-induced acute kidney injury
Quoilin, Caroline ULg; Mouithys-Mickalad, Ange ULg; Lécart, Sandrine et al

Poster (2013, September)

Sepsis is a very complex clinical condition characterized by stimulation of a systemic inflammatory response due to an infection. It has a profound deleterious effect on kidney functions leading to sepsis ... [more ▼]

Sepsis is a very complex clinical condition characterized by stimulation of a systemic inflammatory response due to an infection. It has a profound deleterious effect on kidney functions leading to sepsis-induced acute kidney injury (AKI). This failure seems to occur through complex mechanisms involving the immune system response, inflammatory pathways, cellular dysfunction and hemodynamic instability. To study the role of cellular energetic metabolism dysfunction and mitochondrial impairment in the occurrence of AKI during sepsis, we developed an inflammation-induced in vitro model using proximal tubular epithelial cells (HK-2) exposed to a bacterial endotoxin (lipopolysaccharide, LPS). This investigation has provided key features on the relationship between endotoxic stress and mitochondrial respiratory chain assembly defects. Firstly, we have shown that renal cells subjected to LPS are no longer capable to use adequately the available oxygen to maintain their metabolic functions. One hypothesis of this down-regulation suggests that impairment in mitochondria oxidative phosphorylation could prevent cells from using oxygen for adenosine triphosphate (ATP) production and potentially could cause sepsis-induced organ failure. Our study has then investigated this possible mitochondrial impairment to explain the decreased O2 consumption rate observed in LPS-treated HK-2 cells. After exposure to LPS, functionality of mitochondria was affected without any disturbance in their spatial organization. LPS seemed rather to interrupt mitochondrial oxidative phosphorylation by blocking cytochrome c oxidase activity. As a consequence, disruptions in the electron transport and the proton pumping across the system occurred, leading to a decrease of the mitochondrial membrane potential, an electron leakage as the form of superoxide anion, a release of cytochrome c in the cytosol and a decrease in ATP production. This irreversible defect in the production of cellular energy would support the concept that kidney failure in sepsis may occur on the basis of cytopathic hypoxia. [less ▲]

Detailed reference viewed: 64 (6 ULg)
Full Text
Peer Reviewed
See detailThe challenge of understanding myopathies in horses using permeabilized muscle cells
Votion, Dominique ULg; Mouithys-Mickalad, Ange ULg; Ceusters, Justine ULg et al

in In proceedings 9th Conference on Mitochondrial Physiology (2013, September)

Detailed reference viewed: 53 (22 ULg)
Full Text
Peer Reviewed
See detailIdentification of methylenecyclopropyl acetic acid in serum of European horses with atypical myopathy
Votion, Dominique ULg; van Galen, G; Sweetan et al

in Equine Veterinary Journal (2013)

Detailed reference viewed: 183 (36 ULg)
See detailMitochondrial dysfunction in HDAC5-depleted cancer cells induces glucose-dependent metabolic adaptation
Hendrick, Elodie ULg; Matheus, Nicolas ULg; Peixoto, Paul ULg et al

Poster (2013, May 17)

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that depletion of HDAC5 using siRNA technology triggered cancer cells to both autophagy and apoptosis1. Aims: The goal of this study is to further investigate the molecular mechanisms by which HDAC5 depletion induces both autophagy and apoptosis in cancer cells. Results: Screening transcriptomic study demonstrated that HDAC5 depletion induces a deregulation of genes encoding subunits of complex I of the mitochondrial respiratory chain leading to a significant increase of ROS production. This ROS accumulation promotes autophagy including mitophagy. Indeed, pretreatment with NAC, a ROS scavenger, blocked autophagy triggered by HDAC5 silencing. This autophagy seems to be protective as its blocking with NAC, chloroquine or bafilomycin A1 enhances pro-apoptotic effect of HDAC5 depletion. In addition, mitochondrial dysfunction provokes metabolism adaptation associated with increase of the importance of glucose metabolism in HDAC5 depleted cancer cells. Indeed, low-glucose culture of HDAC5-depleted cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Conclusion: Our study demonstrated for the first time that specific HDAC5 inhibition induces alteration of gene expression encoding mitochondrial proteins in cancer cells and provide insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. [less ▲]

Detailed reference viewed: 24 (2 ULg)
See detailJNK/ROS signaling pathway is responsible for induction of autophagy in HDAC5 depleted cancer cells
Hendrick, Elodie ULg; Mathéus, Nicolas; Peixoto, Paul ULg et al

Poster (2013, February 02)

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that depletion of HDAC5 using siRNA technology triggered cancer cells to both autophagy and apoptosis (ref papier). The study of autophagy in cancer is a new research field that has recently generated tremendous attention due to the recognition that autophagy can have either pro-survival or pro-death functions depending on its level of activation. In addition, more and more studies indicate that a complex relationship exists between autophagy and apoptosis, and that the interplay between these two processes determines whether a cell will live or die. Aims: The goal of this study is to further understand the role of autophagy induced by HDAC5 depletion. Current investigations include determining the molecular mechanisms by which HDAC5 depletion induces autophagy and exploring regulatory relationship between autophagy and apoptosis on cancer cell death in absence of HDAC5. Results: The set up of the autophagy in absence of HDAC5 was demonstrated by the conversion of LC3 and development of autophagosomes by electronic microscopy. Transcriptomic study demonstrated a deregulation of a set of genes involved in ROS detoxification in HDAC5 depleted cancer cells leading to significant increase of ROS levels. Further investigations showed that pretreatment with NAC, a ROS scavenger, effectively blocked the accumulation of ROS and autopahgy triggered by HDAC5 silencing. Moreover, HDAC5 depletion induces activation of JNK, and knockdown of JNK by siRNA inhibited ROS production and autophagy, but antioxidant NAC failed to block JNK activation induced by HDAC5 depletion indicating that JNK activation may be a upstream signaling of ROS and should be a core component in HDAC5 silencing-induced autophagic signaling pathway. Finally, blocking of autophagy induced by HDAC5 silencing with NAC or chloroquine and bafilomycin enhanced pro-apoptotic effect. Conclusion: Autophagy functions as a prosurvival mechanism to mitigate HDAC5 depletion-induced apoptotic cell death, suggesting that targeting autophagy might improve the therapeutic effects of specific HDAC5 inhibition. [less ▲]

Detailed reference viewed: 7 (1 ULg)
See detailJNK/ROS Signaling Pathway Is Responsible for Induction of Autophagy in HDAC5 depleted Cancer Cells
Hendrick, Elodie ULg; Mathéus, Nicolas; Peixoto, Paul ULg et al

Conference (2013, January 29)

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that depletion of HDAC5 using siRNA technology triggered cancer cells to both autophagy and apoptosis (ref papier). The study of autophagy in cancer is a new research field that has recently generated tremendous attention due to the recognition that autophagy can have either pro-survival or pro-death functions depending on its level of activation. In addition, more and more studies indicate that a complex relationship exists between autophagy and apoptosis, and that the interplay between these two processes determines whether a cell will live or die. Aims: The goal of this study is to further understand the role of autophagy induced by HDAC5 depletion. Current investigations include determining the molecular mechanisms by which HDAC5 depletion induces autophagy and exploring regulatory relationship between autophagy and apoptosis on cancer cell death in absence of HDAC5. Results: The set up of the autophagy in absence of HDAC5 was demonstrated by the conversion of LC3 and development of autophagosomes by electronic microscopy. Transcriptomic study demonstrated a deregulation of a set of genes involved in ROS detoxification in HDAC5 depleted cancer cells leading to significant increase of ROS levels. Further investigations showed that pretreatment with NAC, a ROS scavenger, effectively blocked the accumulation of ROS and autopahgy triggered by HDAC5 silencing. Moreover, HDAC5 depletion induces activation of JNK, and knockdown of JNK by siRNA inhibited ROS production and autophagy, but antioxidant NAC failed to block JNK activation induced by HDAC5 depletion indicating that JNK activation may be a upstream signaling of ROS and should be a core component in HDAC5 silencing-induced autophagic signaling pathway. Finally, blocking of autophagy induced by HDAC5 silencing with NAC or chloroquine and bafilomycin enhanced pro-apoptotic effect. Conclusion: Autophagy functions as a prosurvival mechanism to mitigate HDAC5 depletion-induced apoptotic cell death, suggesting that targeting autophagy might improve the therapeutic effects of specific HDAC5 inhibition. [less ▲]

Detailed reference viewed: 18 (0 ULg)
See detailJNK/ROS signaling pathway is responsible for induction of autophagy in HDAC5 depleted cancer cells
Hendrick, Elodie ULg; Mathéus, Nicolas; Peixoto, Paul ULg et al

Poster (2013, January 28)

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that depletion of HDAC5 using siRNA technology triggered cancer cells to both autophagy and apoptosis (ref papier). The study of autophagy in cancer is a new research field that has recently generated tremendous attention due to the recognition that autophagy can have either pro-survival or pro-death functions depending on its level of activation. In addition, more and more studies indicate that a complex relationship exists between autophagy and apoptosis, and that the interplay between these two processes determines whether a cell will live or die. Aims: The goal of this study is to further understand the role of autophagy induced by HDAC5 depletion. Current investigations include determining the molecular mechanisms by which HDAC5 depletion induces autophagy and exploring regulatory relationship between autophagy and apoptosis on cancer cell death in absence of HDAC5. Results: The set up of the autophagy in absence of HDAC5 was demonstrated by the conversion of LC3 and development of autophagosomes by electronic microscopy. Transcriptomic study demonstrated a deregulation of a set of genes involved in ROS detoxification in HDAC5 depleted cancer cells leading to significant increase of ROS levels. Further investigations showed that pretreatment with NAC, a ROS scavenger, effectively blocked the accumulation of ROS and autopahgy triggered by HDAC5 silencing. Moreover, HDAC5 depletion induces activation of JNK, and knockdown of JNK by siRNA inhibited ROS production and autophagy, but antioxidant NAC failed to block JNK activation induced by HDAC5 depletion indicating that JNK activation may be a upstream signaling of ROS and should be a core component in HDAC5 silencing-induced autophagic signaling pathway. Finally, blocking of autophagy induced by HDAC5 silencing with NAC or chloroquine and bafilomycin enhanced pro-apoptotic effect. Conclusion: Autophagy functions as a prosurvival mechanism to mitigate HDAC5 depletion-induced apoptotic cell death, suggesting that targeting autophagy might improve the therapeutic effects of specific HDAC5 inhibition. [less ▲]

Detailed reference viewed: 12 (2 ULg)
Full Text
Peer Reviewed
See detailPhotochemical properties and activity of water-soluble polymer/C60 nanohybrids for photodynamic therapy
Hurtgen, Marie ULg; Debuigne, Antoine ULg; Hoebeke, Maryse ULg et al

in Macromolecular Bioscience (2013), 13(1), 106-115

Water-soluble star-like poly(vinyl alcohol)/C60 and poly{[poly(ethylene glycol) acrylate]-co- (vinyl acetate)}/C60 nanohybrids are prepared by grafting macroradicals onto C60 and are assessed as ... [more ▼]

Water-soluble star-like poly(vinyl alcohol)/C60 and poly{[poly(ethylene glycol) acrylate]-co- (vinyl acetate)}/C60 nanohybrids are prepared by grafting macroradicals onto C60 and are assessed as photosensitizers for photodynamic therapy. The photophysical and biological properties of both nanohybrids highlight key characteristics influencing their overall efficiency. The macromolecular structure (linear/graft) and nature (presence/absence of hydroxyl groups) of the polymeric arms respectively impact the photodynamic activity and the stealthiness of the nanohybrids. The advantages of both nanohybrids are encountered in a third one, poly[(Nvinylpyrrolidone)- co-(vinyl acetate)]/C60, which has linear grafts without hydroxyl groups, and shows a better photodynamic activity. [less ▲]

Detailed reference viewed: 40 (7 ULg)
Full Text
Peer Reviewed
See detailIntra- and extracellular antioxidant capacities of the new water-soluble form of curcumin (NDS27) on stimulated neutrophils and HL-60 cells
Derochette, Sandrine ULg; Franck, Thierry ULg; Mouithys-Mickalad, Ange ULg et al

in Chemico-Biological Interactions (2013), 201(1-3), 49-57

Phagocytic cells, especially neutrophils (PMNs) are specialized in the production of reactive oxygen species (ROS) to kill pathogenic agents, but an excessive ROS production is associated with tissue ... [more ▼]

Phagocytic cells, especially neutrophils (PMNs) are specialized in the production of reactive oxygen species (ROS) to kill pathogenic agents, but an excessive ROS production is associated with tissue damages and inflammatory diseases. Phagocytes are thus prime therapeutic targets to control inflammatory events associated to ROS production. Nowadays, there is a growing interest for the use of polyphenols to modulate the inflammatory response. The aim of this work was to study the antioxidant effect of NDS27, a highly water-soluble form of the polyphenolic molecule curcumin, on in vitro stimulated equine PMNs and human promyelocytic leukemia cells (HL-60). NDS27 was either pre-incubated with cells and eliminated before their activation (intracellular effect) or let in the medium (extracellular effect). Our results indicate that NDS27 significantly and dose-dependently (10 6 M–10 4 M) inhibited the ROS production in both cell types without affecting their viability. NDS27 was able to cross and interact with cell membrane, especially for HL-60 cells, while we observed a better intracellular antioxidant effect with PMNs. The activity of myeloperoxidase (MPO) released by PMNs and HL-60 cells, was decreased by NDS27, but more efficiently for PMNs. These results suggested that the greater efficiency of NDS27 in PMNs is due to an inhibitory effect on cells which are more mature for ROS production, probably by targeting the enzymes implied in respiratory burst like MPO. The modulatory effect of NDS27 on the oxidant activity of cells involved in immune and inflammatory responses opens perspectives for a therapeutic control of pathologies with excessive inflammatory reactions. [less ▲]

Detailed reference viewed: 62 (17 ULg)