References of "Matagne, André"
     in
Bookmark and Share    
See detailGeneration of camelid single-domain antibody fragments raised against proteins containing polyglutamine expansions
Pain, Coralie ULiege; Scarafone, Natacha; Jaspar, Aurélie et al

Poster (2010, October 14)

Nine progressive neurodegenerative diseases are associated with the expansion of a polyglutamine (polyQ) tract above a threshold size (~ 35-45 residues) into nine different proteins [1]. These proteins ... [more ▼]

Nine progressive neurodegenerative diseases are associated with the expansion of a polyglutamine (polyQ) tract above a threshold size (~ 35-45 residues) into nine different proteins [1]. These proteins with expanded polyQ repeats have been found to form intranuclear amyloid-like aggregates, and the formation of these aggregates could play an important role in the pathogenesis [2-4]. The polyQ expansion is the only common feature among the proteins involved, suggesting it may be responsible for the aggregation phenomenon. Understanding the molecular mechanism by which the polyQ expansions promote aggregation is therefore crucial for the development of therapeutic strategies. The nine proteins associated with polyQ diseases are difficult to express recombinantly due to their big size and/or their insoluble character. In order to get further insights into the mechanism by which polyQ tracts promote aggregation, we have therefore decided to insert polyQ sequences into a well studied protein, the b-lactamase BlaP from B. licheniformis [5-6]. We have created chimeras containing 23, 30, 55, and 79 glutamines and we have investigated the effects of the insertions on the activity, the structure, the stability of BlaP as well as on its aggregating properties. Preliminary results indicate that BlaP is a good framework to study the molecular mechanism of aggregation associated with expanded polyglutamine tracts. On another hand, our previous work on the amyloidogenic variants of human lysozyme has shown that camelid single domain antibody fragments are very powerful structural probes to understand, at the molecular level, the mechanism of amyloid fibril formation [7]. Moreover, a recent study has suggested that expanded polyQ strectches adopt multiple conformations in solution that can be readily distinguished by monoclonal antibodies [8]. Altogether these results have encouraged us to generate VHHs against our different chimeras and we present here our preliminary results. References [1] Orr and Zoghbi (2007) Annu Rev Neurosci 30, 575-621. [2] DiFiglia et al. (1997) Science 277, 1990-1993. [3] Paulson HL (2000) Brain Pathol 10, 293-299. [4] Sanchez I. et al. (2003) Nature 421, 373-379. [5] Scarafone N. (2008) Mémoire de DEA en Sciences. Université de Liège. [6] Pain C. (2009) Mémoire de Master en Biochimie. Université de Liège. [7] Dumoulin et al. (2003) Nature 424, 783-788. [8] Legleiter J. et al. (2009) J Biol Chem 284, 21647-21648. [less ▲]

Detailed reference viewed: 43 (4 ULiège)
Full Text
Peer Reviewed
See detailConsistent picture of the reversible thermal unfolding of hen egg-white lysozyme from experiment and molecular dynamics
Meersman, Filip; Atilgan, Canan; Miles, Andrew J. et al

in Biophysical Journal (2010), 99

Detailed reference viewed: 31 (6 ULiège)
Full Text
Peer Reviewed
See detailBackbone 1H, 13C, and 15N resonance assignments for lysozyme from bacteriophage lambda.
Di Paolo, Alexandre ULiege; Duval, Valerie; Matagne, André ULiege et al

in Biomolecular NMR assignments (2010), 4(1), 111-4

Lysozyme from lambda bacteriophage (lambda lysozyme) is an 18 kDa globular protein displaying some of the structural features common to all lysozymes; in particular, lambda lysozyme consists of two ... [more ▼]

Lysozyme from lambda bacteriophage (lambda lysozyme) is an 18 kDa globular protein displaying some of the structural features common to all lysozymes; in particular, lambda lysozyme consists of two structural domains connected by a helix, and has its catalytic residues located at the interface between these two domains. An interesting feature of lambda lysozyme, when compared to the well-characterised hen egg-white lysozyme, is its lack of disulfide bridges; this makes lambda lysozyme an interesting system for studies of protein folding. A comparison of the folding properties of lambda lysozyme and hen lysozyme will provide important insights into the role that disulfide bonds play in the refolding pathway of the latter protein. Here we report the (1)H, (13)C and (15)N backbone resonance assignments for lambda lysozyme by heteronuclear multidimensional NMR spectroscopy. These assignments provide the starting point for detailed investigation of the refolding pathway using pulse-labelling hydrogen/deuterium exchange experiments monitored by NMR. [less ▲]

Detailed reference viewed: 53 (13 ULiège)
Full Text
Peer Reviewed
See detail1H, 13C and 15N backbone resonance assignments for the BS3 class A beta-lactamase from Bacillus licheniformis.
Vandenameele, Julie ULiege; Matagne, André ULiege; Damblon, Christian ULiege

in Biomolecular NMR Assignments (2010), 4(2), 195-7

Class A beta-lactamases (260-280 amino acids; M ( r ) ~ 29,000) are among the largest proteins studied in term of their folding properties. They are composed of two structural domains: an all-alpha domain ... [more ▼]

Class A beta-lactamases (260-280 amino acids; M ( r ) ~ 29,000) are among the largest proteins studied in term of their folding properties. They are composed of two structural domains: an all-alpha domain formed by five to eight helices and an alpha/beta domain consisting of a five-stranded antiparallel beta-sheet covered by three to four alpha-helices. The alpha domain (~150 residues) is made up of the central part of the polypeptide chain whereas the alpha/beta domain (111-135 residues) is constituted by the N- and C-termini of the protein. Our goal is to determine in which order the different secondary structure elements are formed during the folding of BS3. With this aim, we will use pulse-labelling hydrogen/deuterium exchange experiments, in combination with 2D-NMR measurements, to monitor the time-course of formation and stabilization of secondary structure elements. Here we report the backbone resonance assignments as the requirement for further hydrogen/deuterium exchange studies. [less ▲]

Detailed reference viewed: 71 (24 ULiège)
Full Text
Peer Reviewed
See detailRapid Collapse into a Molten Globule Is Followed by Simple Two-State Kinetics in the Folding of Lysozyme from Bacteriophage lambda
Di Paolo, Alexandre ULiege; Balbeur, D.; De Pauw, Edwin ULiege et al

in Biochemistry (2010), 49

Stopped-flow fluorescence and circular dichroism spectroscopy have been used in combination with quenched-flow hydrogen exchange labeling, monitored by two-dimensional NMR and electrospray ionization mass ... [more ▼]

Stopped-flow fluorescence and circular dichroism spectroscopy have been used in combination with quenched-flow hydrogen exchange labeling, monitored by two-dimensional NMR and electrospray ionization mass spectrometry, to investigate the folding kinetics of lysozyme from bacteriophage lambda (lambda lysozyme) at pH 5.6, 20 degrees C. The first step in the folding of lambda lysozyme occurs very rapidly (tau < 1 ms) after refolding is initiated and involves both hydrophobic collapse and formation of a high content of secondary structure but only weak protection from (1)H/(2)H exchange and no fixed tertiary structure organization. This early folding step is reflected in the dead-time events observed in the far-UV CD and ANS fluorescence experiments. Following accumulation of this kinetic molten globule species, the secondary structural elements are stabilized and the majority (ca. 88%) of refolding molecules acquire native-like properties in a highly cooperative two-state process, with tau = 0.15 +/- 0.03 s. This is accompanied by the acquisition of substantial native-like protection from hydrogen exchange. A double-mixing experiment and the absence of a denaturant effect reveal that slow (tau = 5 +/- 1 s) folding of the remaining (ca. 12%) molecules is rate limited by the cis/trans isomerization of prolines that are trans in the folded enzyme. In addition, native state hydrogen exchange and classical denaturant unfolding experiments have been used to characterize the thermodynamic properties of the enzyme. In good agreement with previous crystallographic evidence, our results show that lambda lysozyme is a highly dynamic protein, with relatively low conformational stability (DeltaG degrees (N-U) = 25 +/- 2 kJ.mol(-1)). [less ▲]

Detailed reference viewed: 91 (5 ULiège)
Full Text
Peer Reviewed
See detailFolding of class A beta-lactamases is rate-limited by peptide bond isomerization and occurs via parallel pathways.
Vandenameele, Julie ULiege; Lejeune, Annabelle ULiege; Di Paolo, Alexandre ULiege et al

in Biochemistry (2010), 49(19), 4264-75

Class A beta-lactamases (M(r) approximately 29000) provide good models for studying the folding mechanism of large monomeric proteins. In particular, the highly conserved cis peptide bond between residues ... [more ▼]

Class A beta-lactamases (M(r) approximately 29000) provide good models for studying the folding mechanism of large monomeric proteins. In particular, the highly conserved cis peptide bond between residues 166 and 167 at the active site of these enzymes controls important steps in their refolding reaction. In this work, we analyzed how conformational folding, reactivation, and cis/trans peptide bond isomerizations are interrelated in the folding kinetics of beta-lactamases that differ in the nature of the cis peptide bond, which involves a Pro167 in the BS3 and TEM-1 enzyme, a Leu167 in the NMCA enzyme, and which is missing in the PER-1 enzyme. The analysis of folding by spectroscopic probes and by the regain of enzymatic activity in combination with double-mixing procedures indicates that conformational folding can proceed when the 166-167 bond is still in the incorrect trans form. The very slow trans --> cis isomerization of the Glu166-Xaa167 peptide bond, however, controls the final step of folding and is required for the regain of the enzymatic activity. This very slow phase is absent in the refolding of PER-1, in which the Glu166-Ala167 peptide bond is trans. The double-mixing experiments revealed that a second slow kinetic phase is caused by the cis/trans isomerization of prolines that are trans in the folded proteins. The folding of beta-lactamases is best described by a model that involves parallel pathways. It highlights the role of peptide bond cis/trans isomerization as a kinetic determinant of folding. [less ▲]

Detailed reference viewed: 102 (16 ULiège)
Full Text
Peer Reviewed
See detailMutational analysis of VIM-2 reveals an essential determinant for metallo-beta-lactamase stability and folding.
Borgianni, Luisa; Vandenameele, Julie ULiege; Matagne, André ULiege et al

in Antimicrobial Agents and Chemotherapy (2010), 54(8), 3197-204

Metallo-beta-lactamase (MBL)-producing bacteria are emerging worldwide and represent a formidable threat to the efficacy of relevant beta-lactams, including carbapenems, expanded-spectrum cephalosporins ... [more ▼]

Metallo-beta-lactamase (MBL)-producing bacteria are emerging worldwide and represent a formidable threat to the efficacy of relevant beta-lactams, including carbapenems, expanded-spectrum cephalosporins, and beta-lactamase inactivator/beta-lactam combinations. VIM-2 is currently the most widespread MBL and represents a primary target for MBL inhibitor research, the clinical need for which is expected to further increase in the future. Using a saturation mutagenesis approach, we probed the importance of four residues (Phe-61, Ala-64, Tyr-67, and Trp-87) located close to the VIM-2 active site and putatively relevant to the enzyme activity based on structural knowledge of the enzyme and on structure-activity relationships of the subclass B1 MBLs. The ampicillin MIC values shown by the various mutants were affected very differently depending on the randomized amino acid position. Position 64 appeared to be rather tolerant to substitution, and kinetic studies showed that the A64W mutation did not significantly affect substrate hydrolysis or binding, representing an important difference from IMP-type enzymes. Phe-61 and Tyr-67 could be replaced with several amino acids without the ampicillin MIC being significantly affected, but in contrast, Trp-87 was found to be critical for ampicillin resistance. Further kinetic and biochemical analyses of W87A and W87F variants showed that this residue is apparently important for the structure and proper folding of the enzyme but, surprisingly, not for its catalytic activity. These data support the critical role of residue 87 in the stability and folding of VIM-2 and might have strong implications for MBL inhibitor design, as this residue would represent an ideal target for interaction with small molecules. [less ▲]

Detailed reference viewed: 35 (5 ULiège)
Full Text
Peer Reviewed
See detailComparative study of mature and zymogen mite cysteine protease stability and pH unfolding.
Chevigne, A.; Dumez, Marie-Eve ULiege; Dumoulin, Mireille ULiege et al

in Biochimica et Biophysica Acta (2010), 1800(9), 937-945

BACKGROUND: Papain-like proteases (CA1) are synthesized as inactive precursors carrying an N-terminal propeptide, which is further removed under acidic conditions to generate active enzymes. METHODS: To ... [more ▼]

BACKGROUND: Papain-like proteases (CA1) are synthesized as inactive precursors carrying an N-terminal propeptide, which is further removed under acidic conditions to generate active enzymes. METHODS: To have a better insight into the mechanism of activation of this protease family, we compared the pH unfolding of the zymogen and the mature form of the mite cysteine protease Der p 1. RESULTS: We showed that the presence of the propeptide does not significantly influence the pH-induced unfolding of the catalytic domain but does affect its fluorescence properties by modifying the exposure of the tryptophan 192 to the solvent. In addition, we demonstrated that the propeptide displays weaker pH stability than the protease domain confirming that the unfolding of the propeptide is the key event in the activation process of the zymogen. GENERAL SIGNIFICANCE: Finally, we show, using thermal denaturation and enzymatic activity measurements, that whatever the pH value, the propeptide does not stabilize the structure of the catalytic domain but very interestingly, prevents its autolysis. [less ▲]

Detailed reference viewed: 46 (7 ULiège)
Full Text
Peer Reviewed
See detailThe Zinc Center Influences the Redox and Thermodynamic Properties of Escherichia coli Thioredoxin 2
El Hajjaji, Hayat; Dumoulin, Mireille ULiege; Matagne, André ULiege et al

in Journal of Molecular Biology (2009), 386(1), 60-71

Thioredoxins are small, ubiquitous redox enzymes that reduce protein disulfide bonds by using a pair of cysteine residues present in a strictly conserved WCGPC catalytic motif. The Escherichia coli ... [more ▼]

Thioredoxins are small, ubiquitous redox enzymes that reduce protein disulfide bonds by using a pair of cysteine residues present in a strictly conserved WCGPC catalytic motif. The Escherichia coli cytoplasm contains two thioredoxins, Trx1 and Trx2. Trx2 is special because it is induced under oxidative stress conditions and it has an additional N-terminal zinc-binding domain. We have determined the redox potential of Trx2, the pKa of the active site nucleophilic cysteine, as well as the stability of the oxidized and reduced form of the protein. Trx2 is more oxidizing than Trx1 (–221 mV versus –284 mV, respectively), which is in good agreement with the decreased value of the pKa of the nucleophilic cysteine (5.1 versus 7.1, respectively). The difference in stability between the oxidized and reduced forms of an oxidoreductase is the driving force to reduce substrate proteins. This difference is smaller for Trx2 (ΔΔG°H2O = 9 kJ/mol and ΔTm = 7. 4 °C) than for Trx1 (ΔΔG°H2O = 15 kJ/mol and ΔTm = 13 °C). Altogether, our data indicate that Trx2 is a significantly less reducing enzyme than Trx1, which suggests that Trx2 has a distinctive function. We disrupted the zinc center by mutating the four Zn2+-binding cysteines to serine. This mutant has a more reducing redox potential (–254 mV) and the pKa of its nucleophilic cysteine shifts from 5.1 to 7.1. The removal of Zn2+ also decreases the overall stability of the reduced and oxidized forms by 3.2 kJ/mol and 5.8 kJ/mol, respectively. In conclusion, our data show that the Zn2+-center of Trx2 fine-tunes the properties of this unique thioredoxin. [less ▲]

Detailed reference viewed: 118 (16 ULiège)
Full Text
Peer Reviewed
See detailPositively Cooperative Binding of Zinc Ions to Bacillus cereus 569/H/9 beta-Lactamase II Suggests that the Binuclear Enzyme Is the Only Relevant Form for Catalysis
Jacquin, Olivier ULiege; Balbeur, Dorothée ULiege; Damblon, Christian ULiege et al

in Journal of Molecular Biology (2009), 392(5), 1278-1291

Metallo-beta-lactamases catalyze the hydrolysis of most beta-lactam antibiotics and hence represent a major clinical concern. While enzymes belonging to subclass B1 have been shown to display maximum ... [more ▼]

Metallo-beta-lactamases catalyze the hydrolysis of most beta-lactam antibiotics and hence represent a major clinical concern. While enzymes belonging to subclass B1 have been shown to display maximum activity as dizinc species, the actual metal-to-protein stoichiometry and the affinity for zinc are not clear. We have further investigated the process of metal binding to the beta-lactamase H from Bacillus cereus 569/H/9 (known as BcII). Zinc binding was monitored using complementary biophysical techniques, including circular dichroism in the far-UV, enzymatic activity measurements, competition with a chromophoric chelator, mass spectrometry, and nuclear magnetic resonance. Most noticeably, mass spectrometry and nuclear magnetic resonance experiments, together with catalytic activity measurements, demonstrate that two zinc ions bind cooperatively to the enzyme active site (with K-1/K-2 >= 5) and, hence, that catalysis is associated with the dizinc enzyme species only. Furthermore, competitive experiments with the chromophoric chelator Mag-Fura-2 indicates K-2 < 80 nM. This contrasts with cadmium binding, which is clearly a noncooperative process with the mono form being the only species significantly populated in the presence of 1 molar equivalent of Cd(II). Interestingly, optical measurements reveal that although the apo and dizinc species exhibit undistinguishable tertiary structural organizations, the metal-depleted enzyme shows a significant decrease in its alpha-helical content, presumably associated with enhanced flexibility. (C) 2009 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 110 (31 ULiège)
See detailChimeric proteins as models to study the mechanism of aggregation associated with polyglutamine expansions
Scarafone, Natacha ULiege; Filée, Patrice; Galleni, Moreno ULiege et al

Conference (2008, September)

Detailed reference viewed: 20 (6 ULiège)
Full Text
See detailOptimization of the Production of the Amyloidogenic Variants of Human Lysozyme
Menzer, Linda ULiege; Tocquin, Pierre ULiege; Dony, Nicolas et al

Poster (2008, February 16)

Detailed reference viewed: 30 (3 ULiège)
Full Text
Peer Reviewed
See detailTem-1 Beta-Lactamase Folds in a Nonhierarchical Manner with Transient Non-Native Interactions Involving the C-Terminal Region
Lejeune, Annabelle ULiege; Pain, R. H.; Charlier, Paulette ULiege et al

in Biochemistry (2008), 47(4), 1186-93

The conformational stability and kinetics of refolding and unfolding of the W290F mutant of TEM-1 beta-lactamase have been determined as a function of guanidinium chloride concentration. The activity and ... [more ▼]

The conformational stability and kinetics of refolding and unfolding of the W290F mutant of TEM-1 beta-lactamase have been determined as a function of guanidinium chloride concentration. The activity and spectroscopic properties of the mutant enzyme did not differ significantly from those of the wild type, indicating that the mutation has only a very limited effect on the structure of the protein. The stability of the folded protein is reduced, however, by 5-10 kJ mol-1 relative to that of the molten globule intermediate (H), but the values of the folding rate constants are unchanged, suggesting that Trp-290 becomes organized in its nativelike environment only after the rate-limiting step; i.e., the C-terminal region of the enzyme folds very late. In contrast to the significant increase in fluorescence intensity seen in the dead time (3-4 ms) of refolding of the wild-type protein, no corresponding burst phase was observed with the mutant enzyme, enabling the burst phase to be attributed specifically to the C-terminal Trp-290. This residue is suggested to be buried in a nonpolar environment from which it has to escape during subsequent folding steps. With both proteins, fast early collapse leads to a folding intermediate in which the C-terminal region of the polypeptide chain is trapped in a non-native structure, consistent with a nonhierarchical folding process. [less ▲]

Detailed reference viewed: 103 (25 ULiège)
Full Text
Peer Reviewed
See detailEngineering a camelid antibody fragment that binds to the active site of human lysozyme and inhibits its conversion into amyloid fibrils
Chan, Pak Ho; Pardon, Els; Menzer, Linda ULiege et al

in Biochemistry (2008), 47

single-domain fragment, cAb-HuL22, of a camelid heavy-chain antibody specific for the active site of human lysozyme has been generated, and its effects on the properties of the I56T and D67H amyloidogenic ... [more ▼]

single-domain fragment, cAb-HuL22, of a camelid heavy-chain antibody specific for the active site of human lysozyme has been generated, and its effects on the properties of the I56T and D67H amyloidogenic variants of human lysozyme, which are associated with a form of systemic amyloidosis, have been investigated by a wide range of biophysical techniques. Pulse-labeling hydrogen-deuterium exchange experiments monitored by mass spectrometry reveal that binding of the antibody fragment strongly inhibits the locally cooperative unfolding of the I56T and D67H variants and restores their global cooperativity to that characteristic of the wild-type protein. The antibody fragment was, however, not stable enough under the conditions used to explore its ability to perturb the aggregation behavior of the lysozyme amyloidogenic variants. We therefore engineered a more stable version of cAb-HuL22 by adding a disulfide bridge between the two beta-sheets in the hydrophobic core of the protein. The binding of this engineered antibody fragment to the amyloidogenic variants of lysozyme inhibited their aggregation into fibrils. These findings support the premise that the reduction in global cooperativity caused by the pathogenic mutations in the lysozyme gene is the determining feature underlying their amyloidogenicity. These observations indicate further that molecular targeting of enzyme active sites, and of protein binding sites in general, is an effective strategy for inhibiting or preventing the aberrant self-assembly process that is often a consequence of protein mutation and the origin of pathogenicity. Moreover, this work further demonstrates the unique properties of camelid single-domain antibody fragments as structural probes for studying the mechanism of aggregation and as potential inhibitors of fibril formation. [less ▲]

Detailed reference viewed: 141 (24 ULiège)
Full Text
Peer Reviewed
See detailActivation mechanism of recombinant Der p 3 allergen zymogen - Contribution of cysteine protease Der p 1 and effect of propeptide glycosylation
Dumez, Marie-Eve ULiege; Teller, Nathalie; Mercier, Frédéric ULiege et al

in Journal of Biological Chemistry (2008), 283(45), 30606-30617

The trypsin-like protease Der p 3, a major allergen of the house dust mite Dermatophagoides pteronyssinus, is synthesized as a zymogen, termed proDer p 3. No recombinant source of Der p 3 has been ... [more ▼]

The trypsin-like protease Der p 3, a major allergen of the house dust mite Dermatophagoides pteronyssinus, is synthesized as a zymogen, termed proDer p 3. No recombinant source of Der p 3 has been described yet, and the zymogen maturation mechanism remains to be elucidated. The Der p 3 zymogen was produced in Pichia pastoris. We demonstrated that the recombinant zymogen is glycosylated at the level of its propeptide. We showed that the activation mechanism of proDer p 3 is intermolecular and is mediated by the house dust mite cysteine protease Der p 1. The primary structure of the proDer p 3 propeptide is associated with a unique zymogen activation mechanism, which is different from those described for the trypsin-like family and relies on the house dust mite papain-like protease Der p 1. This is the first report of a recombinant source of Der p 3, with the same enzymatic activity as the natural enzyme and trypsin. Glycosylation of the propeptide was found to decrease the rate of maturation. Finally, we showed that recombinant Der p 3 is inhibited by the free modified prosequence TP1R. [less ▲]

Detailed reference viewed: 117 (16 ULiège)