References of "Malgrange, Brigitte"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNOX3, a superoxide-generating NADPH oxidase of the inner ear
Banfi, Botond; Malgrange, Brigitte ULg; Knisz, Judit et al

in Journal of Biological Chemistry (2004), 279(44), 46065-46072

Reactive oxygen species (ROS) play a major role in drug-, noise-, and age-dependent hearing loss, but the source of ROS in the inner ear remains largely unknown. Herein, we demonstrate that NADPH oxidase ... [more ▼]

Reactive oxygen species (ROS) play a major role in drug-, noise-, and age-dependent hearing loss, but the source of ROS in the inner ear remains largely unknown. Herein, we demonstrate that NADPH oxidase (NOX) 3, a member of the NOX/dual domain oxidase family of NADPH oxidases, is highly expressed in specific portions of the inner ear. As assessed by real-time PCR, NOX3 mRNA expression in the inner ear is at least 50-fold higher than in any other tissues where its expression has been observed ( e. g. fetal kidney, brain, skull). Microdissection and in situ hybridization studies demonstrated that NOX3 is localized to the vestibular and cochlear sensory epithelia and to the spiral ganglions. Transfection of human embryonic kidney 293 cells with NOX3 revealed that it generates low levels of ROS on its own but produces high levels of ROS upon co-expression with cytoplasmic NOX subunits. NOX3-dependent superoxide production required a stimulus in the absence of subunits and upon co-expression with phagocyte NADPH oxidase subunits p47(phox) and p67(phox), but it was stimulus-independent upon co-expression with colon NADPH oxidase subunits NOX organizer 1 and NOX activator 1. Pre-incubation of NOX3-transfected human embryonic kidney 293 cells with the ototoxic drug cisplatin markedly enhanced superoxide production, in both the presence and the absence of subunits. Our data suggest that NOX3 is a relevant source of ROS generation in the cochlear and vestibular systems and that NOX3-dependent ROS generation might contribute to hearing loss and balance problems in response to ototoxic drugs. [less ▲]

Detailed reference viewed: 30 (5 ULg)
Full Text
Peer Reviewed
See detailCaspases, the enemy within, and their role in oxidative stress-induced apoptosis of inner ear sensory cells
Van De Water, T. R.; Lallemend, François; Eshraghi, A. A. et al

in Otology & Neurotology (2004), 25(4), 627-632

This review covers the general roles of members of the cysteine protease family of caspases in the process of apoptosis (programmed cell death) looking at their participation in both the "extrinsic" cell ... [more ▼]

This review covers the general roles of members of the cysteine protease family of caspases in the process of apoptosis (programmed cell death) looking at their participation in both the "extrinsic" cell death receptor and the "intrinsic" mitochondrial cell death pathways. It defines the difference between initiator and effector caspases and shows the progression of caspase activations that ends up in the apoptotic cell death and elimination of a damaged cell. The review then presents what is currently know about the participation of caspases in the programmed cell death of inner ear sensory cells during the process of normal development and maturation of the inner ear and their importance in this process as illustrated by the results of caspase-3 gene knockout experiments. The participation of specific caspases and the sequence of their activation in the elimination (apoptosis) of damaged sensory cells from adult inner ears after an injury that generates oxidative stress are reviewed. Both the possibility and the potential efficacy of caspase inhibition with a broad-spectrum pancaspase inhibitor as an interventional therapy to treat and rescue oxidative stress-damaged inner ear sensory cells from apoptosis are presented and discussed. [less ▲]

Detailed reference viewed: 60 (2 ULg)
Full Text
Peer Reviewed
See detailStriatal PSA-NCAM(+) precursor cells from the newborn rat express functional glycine receptors
Nguyen, Laurent ULg; Malgrange, Brigitte ULg; Breuskin, Ingrid ULg et al

in Neuroreport (2004), 15(4), 583-587

Immunocytochemical analysis showed that ionotropic glycine receptors are expressed in neurogenic progenitors purified from the newborn rat striatum and expressing the polysialylated form of the neural ... [more ▼]

Immunocytochemical analysis showed that ionotropic glycine receptors are expressed in neurogenic progenitors purified from the newborn rat striatum and expressing the polysialylated form of the neural cell adhesion molecule, both in vitro and in situ. To ascertain whether glycine receptors were functional in vitro, whole-cell patch-clamp recordings demonstrated that glycine triggers inward strychnine-sensitive currents in the majority of these cells. Moreover, we found that glycine receptors expressed by these neurogenic progenitors display intermediate electrophysiological characteristics between those of glycine receptors expressed by neural stem cells and by mature interneurons from the rat striatum. Altogether, the present data show that functional strychnine-sensitive glycine receptors are expressed in neurogenic progenitors purified from the newborn rat striatum. [less ▲]

Detailed reference viewed: 19 (4 ULg)
Full Text
Peer Reviewed
See detailModulation of the HSV-TK/ganciclovir bystander effect by n-butyrate in glioblastoma: correlation with gap-junction intercellular communication.
Robe, Pierre ULg; Jolois, Olivier ULg; Nguyen Khac, Minh-Tuan ULg et al

in International Journal of Oncology (2004), 25(1), 187-92

The efficacy of HSV-TK/ganciclovir gene therapy largely relies on the bystander effect, i.e. the ability of transfected cells to kill the adjacent, untrasfected cells. This mechanism itself depends ... [more ▼]

The efficacy of HSV-TK/ganciclovir gene therapy largely relies on the bystander effect, i.e. the ability of transfected cells to kill the adjacent, untrasfected cells. This mechanism itself depends chiefly on the transfer via gap junctions of phosphorylated ganciclovir between cells, and is often deficient in glioblastomas. In this report, we demonstrate that n-butyrate markedly enhances the gap junction intercellular communication of GJIC-deficient glioma cells, and significantly increases the bystander effect in such cells. This effect of n-butyrate appears to be independent from its HDAC inhibitory effect, since trichostatin A does not reproduce it. [less ▲]

Detailed reference viewed: 20 (6 ULg)
Full Text
Peer Reviewed
See detailThe Inhibition of Cyclin-Dependent Kinases Induces Differentiation of Supernumerary Hair Cells and Deiters' Cells in the Developing Organ of Corti
Malgrange, Brigitte ULg; Knockaert, Marie; Belachew, Shibeshih ULg et al

in FASEB Journal (2003), 17(14), 2136-8

In the embryonic day 19 organs of Corti, we showed that roscovitine, a chemical inhibitor of cyclin-dependent kinases (CDKs), significantly increased the number of hair cells (HCs) and corresponding ... [more ▼]

In the embryonic day 19 organs of Corti, we showed that roscovitine, a chemical inhibitor of cyclin-dependent kinases (CDKs), significantly increased the number of hair cells (HCs) and corresponding supporting cells (SCs) by triggering differentiation of precursor cells without interacting with cell proliferation. The effect of roscovitine was mimicked by other CDK1, 2, 5, and 7 inhibitors but not by CDK4/6 and mitogen-activated protein kinase pathway antagonists. Immunohistochemical analysis indicated that roscovitine-specific intracellular targets, CDK1, 2, 5, and 7, were expressed in the organ of Corti and especially in Hensen's cells. Affinity chromatography studies showed a tight correlation between the protein levels of CDK1/2 and 5 and the rate of roscovitine-induced supernumerary cells in the organ of Corti. In addition, we demonstrated that basal CDK activity was higher and more roscovitine-sensitive at developmental stages that are selectively permissive for the emergence of supernumerary cells. These results suggest that CDKs are involved in the normal development of the organ of Corti and that, at least in E19 embryos, inhibition of CDKs is sufficient to trigger the differentiation of HCs and corresponding SCs, presumably from the Hensen's cell progenitors and/or from progenitors located in the greater epithelial ridge area. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
Peer Reviewed
See detailSubstance P protects spiral ganglion neurons from apoptosis via PKC-Ca2+-MAPK/ERK pathways
Lallemend, François; Lefèbvre, Philippe ULg; Hans, Grégory ULg et al

in Journal of Neurochemistry (2003), 87(2), 508-521

In the current study, we have investigated the ability of substance P (SP) to protect 3-day-old (P3) rat spiral ganglion neurons (SGNs) from trophic factor deprivation (TFD)-induced cell death. The ... [more ▼]

In the current study, we have investigated the ability of substance P (SP) to protect 3-day-old (P3) rat spiral ganglion neurons (SGNs) from trophic factor deprivation (TFD)-induced cell death. The presence of SP high affinity neurokinin-1 receptor (NK1) transcripts was detected in the spiral ganglion and the NK1 protein localized to SGNs both ex vivo and in vitro. Treatment with SP increased cytoplasmic Ca2+ in SGNs, further arguing for the presence of functional NK1 on these neurons. Both SP and the agonist [Sar(9), Met(O-2)(11)]-SP significantly decreased SGN cell death induced by TFD, with no effect on neurite outgrowth. The survival promoting effect of SP was blocked by the NK1 antagonist, WIN51708. Both pan-caspase inhibitor BOC-D-FMK and SP treatments markedly reduced activation of caspases and DNA fragmentation in trophic factor deprived-neurons. The neuroprotective action of SP was antagonised by specific inhibitors of second messengers, including 1.2-bis-(O-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM) to chelate cytosolic Ca2+, the protein kinase C (PKC) inhibitors bisindolylmaleimide I, Go6976 and LY333531 and the MAPK/ERK inhibitor U0126. In contrast, nifedipine, a specific inhibitor of L-type Ca2+ channel, and LY294002, a phosphatidylinositol-3-OH kinase (PI3K) inhibitor, had no effect on SP trophic support of SGNs. Moreover, activation of endogenous PKC by 4beta-phorbol 12-myristate 13-acetate (PMA) also reduced the loss of trophic factor-deprived SGNs. Thus, NK1 expressed by SGNs transmit a survival-promoting regulatory signal during TFD-induced SGN cell death via pathways involving PKC activation, Ca2+ signalling and MAPK/ERK activation, which can be accounted for by an inhibition of caspase activation. [less ▲]

Detailed reference viewed: 37 (0 ULg)
Full Text
Peer Reviewed
See detailChemical inhibitors of cyclin-dependent kinases control proliferation, apoptosis and differentiation of oligodendroglial cells
Nguyen, Laurent ULg; Malgrange, Brigitte ULg; Rocher, Véronique et al

in International Journal of Developmental Neuroscience (2003), 21(6), 321-326

Since cyclin-dependent kinases (Cdks) and their endogenous inhibitors (Cdkis) play an essential role as regulators of cell cycle withdrawal and onset of differentiation within oligodendroglial cells, we ... [more ▼]

Since cyclin-dependent kinases (Cdks) and their endogenous inhibitors (Cdkis) play an essential role as regulators of cell cycle withdrawal and onset of differentiation within oligodendroglial cells, we assessed here the effects of exogenous chemical Cdk inhibitors (CKIs) on cultured rat cortical oligodendrocyte progenitor cells (OPCs). We showed that purine derivatives and especially roscovitine strongly inhibited OPCs proliferation. In the presence of mitogenic signals, roscovitine synergized with thyroid hormone to stimulate oligodendrocyte differentiation. Roscovitine also prevented oligodendroglial apoptosis induced by growth factor deprivation. We thus demonstrated that small molecular weight chemical CKIs have important effects on crucial events of oligodendroglial development in vitro. This might open prospects for using these apparently well tolerated agents in remyelination strategies. (C) 2003 ISDN. Published by Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 37 (3 ULg)
Full Text
Peer Reviewed
See detailUntangling the functional potential of PSA-NCAM-expressing cells in CNS development and brain repair strategies
Nguyen, Laurent ULg; Rigo, Jean-Michel; Malgrange, Brigitte ULg et al

in Current Medicinal Chemistry (2003), 10(20), 2185-2196

Central nervous system (CNS) neural stem cells (NSCs), which are mostly defined by their ability to self-renew and to generate the three main cell lineages of the CNS, were isolated from discrete regions ... [more ▼]

Central nervous system (CNS) neural stem cells (NSCs), which are mostly defined by their ability to self-renew and to generate the three main cell lineages of the CNS, were isolated from discrete regions of the adult mammalian CNS including the subventricular zone (SVZ) of the lateral ventricle and the dentate gyrus in the hippocampus. At early stages of CNS cell fate determination, NSCs give rise to progenitors that express the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). PSA-NCAM(+) cells persist in adult brain regions where neuronal plasticity and sustained formation of new neurons occur. PSA-NCAM, has been shown to be involved in the regulation of CNS myelination as well as in changes of cell morphology that are necessary for motility, axonal guidance, synapse formation, and functional plasticity in the CNS. Although being preferentially committed to a restricted either glial or neuronal fate, cultured PSA-NCAM(+) progenitors do preserve a relative degree of multipotentiality. Considering that PSA-NCAM(+) cells can be neatly used for brain repair purposes, there is much interest for studying signaling factors regulating their development. With this regard, it is noteworthy that neurotransmitters, which belong to the micro-environment of neural cells in vivo, regulate morphogenetic events preceding synaptogenesis such as cell proliferation, migration, differentiation and death. Consistently, several ionotropic but also G-protein-coupled neurotransmitter receptors were found to be expressed in CNS embryonic and postnatal progenitors. In the present review, we outlined the ins and outs of PSA-NCAM(+) cells addressing to what extent our understanding of extrinsic and in particular neurotransmitter-mediated signaling in these CNS precursor cells might represent a new leading track to develop alternative strategies to stimulate brain repair. [less ▲]

Detailed reference viewed: 34 (6 ULg)
Full Text
Peer Reviewed
See detailArrest of apoptosis in auditory neurons: Implications for sensorineural preservation in cochlear implantation
Scarpidis, U.; Madnani, D.; Shoemaker, C. et al

in Otology & Neurotology (2003), 24(3), 409-417

Hypothesis: The JNK/c-Jun cell death pathway is a major pathway responsible for the loss of oxidative stress-damaged auditory neurons. Background: Implantation of patients with residual hearing ... [more ▼]

Hypothesis: The JNK/c-Jun cell death pathway is a major pathway responsible for the loss of oxidative stress-damaged auditory neurons. Background: Implantation of patients with residual hearing accentuates the need to preserve functioning sensorineural elements. Although some auditory function may survive electrode insertion, the probability of initiating an ongoing loss of auditory neurons and hair cells is unknown. Cochlear implantation can potentially generate oxidative stress, which can initiate the cell death of both auditory neurons and hair cells. Methods: Dissociated cell cultures of P4 rat auditory neurons identified the apoptotic pathway initiated by oxidative stress insults (e.g., loss of trophic factor support) and characterized this pathway by arresting translation of pathway-specific mRNA with antisense oligonucleotide treatment and with the use of pathway specific inhibitors. The presence or absence of apoptosis-specific protein and changes in the level of neuronal survival measured the efficacy of these interventional strategies. Results: These in vitro studies identified the JNK/c-Jun cascade as a major initiator of apoptosis of auditory neurons in response to oxidative stress. Neurons pretreated with c-jun antisense oligonucleotide and exposed to high levels of oxidative stress were rescued from apoptosis, whereas neurons in treatment control cultures died. Treatment of oxidative-stressed cultures with either curcumin, a MAPKKK pathway inhibitor, or PD-098059, a MEK1 inhibitor, blocked loss of neurons via the JNK/c-Jun apoptotic pathway. Conclusion: Blocking the JNK/c-Jun cell death pathway is a feasible approach to treating oxidative stress-induced apoptosis within the cochlea and may have application as an otoprotective strategy during cochlear implantation. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailAutocrine/paracrine activation of the GABA(A) receptor inhibits the proliferation of neurogenic polysialylated neural cell adhesion molecule-positive (PSA-NCAM+) precursor cells from postnatal striatum.
Nguyen, Laurent ULg; Malgrange, Brigitte ULg; Breuskin, Ingrid ULg et al

in Journal of Neuroscience (2003), 23(8), 3278-94

GABA and its type A receptor (GABA(A)R) are present in the immature CNS and may function as growth-regulatory signals during the development of embryonic neural precursor cells. In the present study, on ... [more ▼]

GABA and its type A receptor (GABA(A)R) are present in the immature CNS and may function as growth-regulatory signals during the development of embryonic neural precursor cells. In the present study, on the basis of their isopycnic properties in a buoyant density gradient, we developed an isolation procedure that allowed us to purify proliferative neural precursor cells from early postnatal rat striatum, which expressed the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). These postnatal striatal PSA-NCAM+ cells were shown to proliferate in the presence of epidermal growth factor (EGF) and formed spheres that preferentially generated neurons in vitro. We demonstrated that PSA-NCAM+ neuronal precursors from postnatal striatum expressed GABA(A)R subunits in vitro and in situ. GABA elicited chloride currents in PSA-NCAM+ cells by activation of functional GABA(A)R that displayed a typical pharmacological profile. GABA(A)R activation in PSA-NCAM+ cells triggered a complex intracellular signaling combining a tonic inhibition of the mitogen-activated protein kinase cascade and an increase of intracellular calcium concentration by opening of voltage-gated calcium channels. We observed that the activation of GABA(A)R in PSA-NCAM+ neuronal precursors from postnatal striatum inhibited cell cycle progression both in neurospheres and in organotypic slices. Furthermore, postnatal PSA-NCAM+ striatal cells synthesized and released GABA, thus creating an autocrine/paracrine mechanism that controls their proliferation. We showed that EGF modulated this autocrine/paracrine loop by decreasing GABA production in PSA-NCAM+ cells. This demonstration of GABA synthesis and GABA(A)R function in striatal PSA-NCAM+ cells may shed new light on the understanding of key extrinsic cues that regulate the developmental potential of postnatal neuronal precursors in the CNS. [less ▲]

Detailed reference viewed: 56 (11 ULg)
Full Text
Peer Reviewed
See detailEpithelial supporting cells can differentiate into outer hair cells and Deiters' cells in the cultured organ of Corti
Malgrange, Brigitte ULg; Thiry, Marc ULg; Van De Water, Thomas R. et al

in Cellular and Molecular Life Sciences : CMLS (2002), 59(10), 1744-1757

The organ of Corti is a complex structure containing a single row of inner hair cells (IHCs) and three rows of outer hair cells (OHCs), supported respectively by one row of inner phalangeal cells and ... [more ▼]

The organ of Corti is a complex structure containing a single row of inner hair cells (IHCs) and three rows of outer hair cells (OHCs), supported respectively by one row of inner phalangeal cells and three rows of Deiters' cells. When fetal rat organ of Corti explants are cultured, supernumerary OHCs and supernumerary Deiters' cells are produced, without any additional cell proliferation. Analysis of semi- and ultrathin sections revealed that supernumerary OHCs are produced at the distal edge of the organ of Corti. Quantitative analysis of cell types present in the organ of Corti demonstrates that when the number of OHCs increases: (i) the total number of cells remains constant; (ii) the number of Deiters' cells increases; (iii) the number of tectal cells decreases and of Hensen's cells decreases. Using specific HC markers, i.e. jagged2 (Jag2) and Math1, we showed that in addition to existing OHCs, supernumerary OHCs, tectal cells and Hensen's cells expressed these markers in embryonic day 19 organ of Corti explants after 5 days in vitro. The results of this study suggest that Hensen's cells retain the capacity to differentiate into either tectal cells, which differentiate into OHCs, or into undertectal cells which differentiate into Deiters' cells. [less ▲]

Detailed reference viewed: 18 (3 ULg)
Full Text
Peer Reviewed
See detailAAV2 vectors mediate efficient and sustained transduction of rat embryonic ventral mesencephalon
Lehtonen, E.; Bonnaud, F.; Melas, C. et al

in Neuroreport (2002), 13(12), 1503-1507

The success of transplantation of human embryonic mesencephalic tissue to treat parkinsonian patients is limited by the poor survival of the transplant. We show that an AAV2 vector mediates efficient ... [more ▼]

The success of transplantation of human embryonic mesencephalic tissue to treat parkinsonian patients is limited by the poor survival of the transplant. We show that an AAV2 vector mediates efficient expression of the egfp reporter gene in organotypic cultures of freshly explanted solid fragments of rat embryonic ventral mesencephalon (VM). We observed early and sustained transgene expression (4 days to greater than or equal to 6 weeks). Furthermore, rAAV-infected rat embryonic VM transplanted in the adult striatum continued to express EGFP for greater than or equal to 3 months. More than 95% of the transduced cells were neurons. Dopaminergic neurons were transduced at low frequency at earlier time points. This method of gene delivery could prove useful to achieve local, continuous secretion of neurotrophic factors at physiologically relevant doses to treat Parkinson's disease. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailIdentification of factors that maintain mammalian outer hair cells in adult organ of Corti explants
Malgrange, Brigitte ULg; Rigo, Jean-Michel; Coucke, Paul et al

in Hearing Research (2002), 170(1-2), 48-58

Both outer hair cells (OHCs) and inner hair cells (IHCs) survive and mature in 3 days old rat organ of Corti explants cultured for I month in a minimal essential medium. In contrast. under the same ... [more ▼]

Both outer hair cells (OHCs) and inner hair cells (IHCs) survive and mature in 3 days old rat organ of Corti explants cultured for I month in a minimal essential medium. In contrast. under the same culture conditions, only IHCs survive in explants from adult guinea pig organ of Corti while many of the OHCs are lost within the first 48 It. Hair cell Count,, show OHCs loss to be greater in the lower portion (i.e. middle turn) of the cochlea than Lit the apex. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) indicates that there is DNA damage in adult OHCs, within 8 h of explantation. Treatment of the adult organ of Corti explants with either actinomycin D (10(-7) M) or cycloheximide (10(-6) M) prevents most OHC losses . According to these results apoptosis may be the mechanism of OHC loss in adult organ of Corti explants, Stable membrane potentials recorded from the OHCs in both uncultured and actinomycin D-treated organ of Corti explants cultured for 72 h demonstrate the functional integrity of these hair cells. OHC losses in the adult guinea pig, organ of Corti cultures can also be prevented by treatment with several of the growth factors tested. i.e. acidic fibroblast growth factor (aFGF), insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), transforming growth factor-beta1 (TGF-beta1). and glial cell-derived neurotrophic factor (GDNF). The results of this study suggest that growth factor therapy may be applicable to the treatment of some hearing disorders. (C) 2002 Elsevier Science B.V. All rights reserved. [less ▲]

Detailed reference viewed: 68 (6 ULg)
Full Text
Peer Reviewed
See detailThe anti-epileptic drug levetiracetam reverses the inhibition by negative allosteric modulators of neuronal GABA- and glycine-gated currents
Rigo, Jean-Michel; Hans, Grégory ULg; Nguyen, Laurent ULg et al

in British Journal of Pharmacology (2002), 136(5), 659-672

1 In this study in vitro and in vivo approaches were combined in order to investigate if the anti-epileptic mechanism(s) of action of levetiracetam (LEV; Keppra(R)) may involve modulation of inhibitory ... [more ▼]

1 In this study in vitro and in vivo approaches were combined in order to investigate if the anti-epileptic mechanism(s) of action of levetiracetam (LEV; Keppra(R)) may involve modulation of inhibitory neurotransmission. 2 GABA- and glycine-gated currents were studied in vitro using whole-cell patch-clamp techniques applied on cultured cerebellar granule, hippocampal and spinal neurons. Protection against clonic convulsions was assessed in vivo in sound-susceptible mice. The effect of LEV was compared with reference anti-epileptic drugs (AEDs): carbamazepine, phenytoin, valproate, clonazepam, phenobarbital and ethosuximide. 3 LEV contrasted the reference AEDs by an absence of any direct effect on glycine-gated currents. At high concentrations, beyond therapeutic relevance, it induced a small reduction in the peak amplitude and a prolongation of the decay phase of GABA-gated currents. A similar action on GABA-elicited currents was observed with the reference AEDs, except ethosuximide. 4 These minor direct effects contrasted with a potent ability of LEV (EC50 = 1-10 muM) to reverse the inhibitory effects of the negative allosteric modulators zinc and beta-carbolines on both GABA(A) and glycine receptor-mediated responses. 5 Clonazepam, phenobarbital and valproate showed a similar ability to reverse the inhibition of beta-carbolines on GABA-gated currents. Blockade of zinc inhibition of GABA responses was observed with clonazepam and ethosuximide. Phenytoin was the only AED together with LEV that inhibited the antagonism of zinc on glycine-gated currents and only clonazepam and phenobarbital inhibited the action of DMCM. 6 LEV (17 mg kg(-1)) produced a potent suppression of sound-induced clonic convulsions in mice. This protective effect was significantly abolished by co-administration of the beta-carboline FG 7142, from a dose of 5 mg kg(-1). In contrast, the benzodiazepine receptor antagonist flumazenil (up to 10 mg kg(-1)) was without any effect on the protection afforded by LEV. 7 The results of the present study suggest that a novel ability to oppose the action of negative modulators on the two main inhibitory ionotropic receptors may be of relevance for the anti-epileptic mechanism(s) of action of LEV. [less ▲]

Detailed reference viewed: 89 (25 ULg)
Full Text
Peer Reviewed
See detailEffect of systemic nitroglycerin on CGRP and 5-HT afferents to rat caudal spinal trigeminal nucleus and its modulation by estrogen
Pardutz, A.; Multon, Sylvie ULg; Malgrange, Brigitte ULg et al

in European Journal of Neuroscience (2002), 15(11), 1803-1809

Systemic administration of nitroglycerin, a nitric oxide donor, triggers in migraine patients a delayed attack of unknown mechanism. After puberty migraine is more prevalent in women. Attacks can be ... [more ▼]

Systemic administration of nitroglycerin, a nitric oxide donor, triggers in migraine patients a delayed attack of unknown mechanism. After puberty migraine is more prevalent in women. Attacks can be triggered by abrupt falls in plasma estrogen levels, which accounts in part for sexual dimorphism, but lacks an established neurobiological explanation. We studied the effect of nitroglycerin on the innervated area of calcitonin gene-related peptide (CGRP) and serotonin-immunoreactive afferents to the superficial laminae of the spinal portion of trigeminal nucleus caudalis, and its modulation by estrogen. In male rats, nitroglycerin produced after 4 h a significant decrease of the area innervated by CGRP-immunoreactive afferents and an increase of that covered by serotonin-immunoreactive fibres. These effects were not observed in the superficial laminae of thoracic dorsal horns. The effect of nitroglycerin was similar in ovariectomized females. In estradiol-treated ovariectomized females the area in the spinal portion of trigeminal nucleus caudalis laminae I-II covered by CGRP-immunoreactive fibres was lower and that of serotonin-immunoreactive fibres was higher than in males and for both transmitters not significantly changed after nitroglycerin. The bouton size of CGRP profiles was smaller in estradiol-treated ovariectomized females, whereas after nitroglycerin it decreased significantly but only in males and ovariectomized females. Nitroglycerin, i.e. nitric oxide, is thus able to differentially influence afferent fibres in the superficial laminae of rat spinal trigeminal nucleus caudalis. Estradiol modulates the basal expression of these transmitters and blocks the nitroglycerin effect. These data may contribute to understanding the mechanisms by which estrogens influence migraine severity and the triggering of attacks by nitric oxide. [less ▲]

Detailed reference viewed: 30 (3 ULg)
Peer Reviewed
See detailUse of cell-seeded polylactide scaffolds in a new model of mouse spinal cord lesion to promote axonal regeneration.
Schils, F.; Franzen, R.; Maquet, V. et al

Conference (2002, April)

Detailed reference viewed: 5 (1 ULg)
Full Text
Peer Reviewed
See detailFunctional glycine receptors are expressed by postnatal nestin-positive neural stem/progenitor cells
Nguyen, Laurent ULg; Malgrange, Brigitte ULg; Belachew, Shibeshih ULg et al

in European Journal of Neuroscience (2002), 15(8), 1299-1305

Multipotent neural stem and progenitor cells (NS/PCs) are well-established cell subpopulations occurring in the developing, and also in the mature mammalian nervous systems. Trophic and transcription ... [more ▼]

Multipotent neural stem and progenitor cells (NS/PCs) are well-established cell subpopulations occurring in the developing, and also in the mature mammalian nervous systems. Trophic and transcription factors are currently the main signals known to influence the development and the commitment of NS/PCs and their progeny. However, recent studies suggest that neurotransmitters could also contribute to neural development. In that respect, rodent-cultured embryonic NS/PCs have been reported to express functional neurotransmitter receptors. No similar investigation has, however, been made in postnatal and/or in adult rodent brain stem cells. In this study, using RT-PCR and immunocytochemical methods, we show that alpha(1) -, alpha(2) - and beta-subunit mRNAs and alpha-subunit proteins of the glycine ionotropic receptor are expressed by 80.5 +/- 0.9% of postnatal rat striatum-derived, nestin-positive cells within cultured neurospheres. Whole-cell patch-clamp experiments further demonstrated that glycine triggers in 33.5% of these cells currents that can be reversibly blocked by strychnine and picrotoxin. This demonstrates that NS/PCs express functional glycine receptors, the consequence(s) of their activation remaining unknown. [less ▲]

Detailed reference viewed: 22 (1 ULg)
Full Text
Peer Reviewed
See detailProliferative generation of mammalian auditory hair cells in culture
Malgrange, Brigitte ULg; Belachew, Shibeshih ULg; Thiry, Marc ULg et al

in Mechanisms of Development (2002), 112(1-2), 79-88

Detailed reference viewed: 32 (4 ULg)
Peer Reviewed
See detailPharmacologic treatment of inner ear: from basic science to the patient.
Lefèbvre, Philippe ULg; Staecker, H.; Van de Water, T. et al

in Acta Oto-Rhino-Laryngologica Belgica (2002), 56(1), 45-9

Most of the deafness are of sensorineural origin and are characterized by a loss of hair cells and of spiral ganglion neurons. At the present time, hearing aids are the only treatment. However, in some ... [more ▼]

Most of the deafness are of sensorineural origin and are characterized by a loss of hair cells and of spiral ganglion neurons. At the present time, hearing aids are the only treatment. However, in some diseases of the inner ear, pharmacological treatment have been proposed and used successfully. In this paper, we will review some basic science aspects of the biology of the neurosensory structures of the inner ear, in particular of the auditory neurons, that lead to the rationale of some treatments for the inner ear diseases. Developmental studies, neuronal cell culture experiments, and analyses of gene knockout animals reveal a number of growth factors which are important for the rescue and repair of injured auditory neurons in the inner ear. These factors rescue the injured auditory neurons in vivo. Furthermore, perfusion of antioxydant to the cochlea prevented the hearing loss induced by cisplatin. These in vitro and in vivo experiments demonstrate that it is possible to manipulate the neurosensory structures of the inner ear and provide an effective treatment to prevent the degeneration of the neurons. The molecules or drugs can be administered locally to the inner ear through a direct perilymphatic perfusion or through the round window membrane. As an example, we will discuss the treatment of patients suffering from idiopathic sensorineural hearing loss which can be treated successfully by a perfusion through the round window membrane, improving their hearing threshold and their speech discrimination. [less ▲]

Detailed reference viewed: 29 (7 ULg)