References of "Lins, Laurence"
     in
Bookmark and Share    
Peer Reviewed
See detailExperimental and in silico approaches to study the interaction of Remorin with plant plasma membrane : specific interaction of the C-term domain with lipids
Deleu, Magali ULg; Nasir, Mehmet Nail ULg; Gronnier, Julien et al

Conference (2015, September 29)

The function of Remorins, a diverse family of plant-specific proteins (1) is far to be fully elucidated. One of them, StREM1.3 (for Solanum tuberosum Remorin from group 1, homolog 3) has been reported to ... [more ▼]

The function of Remorins, a diverse family of plant-specific proteins (1) is far to be fully elucidated. One of them, StREM1.3 (for Solanum tuberosum Remorin from group 1, homolog 3) has been reported to regulate cell-to-cell propagation of the potato virus X (2). It was also shown to be localized to the inner leaflet of plasma membranes (PMs) and along plasmodesmata, bridges connecting neighbor cells essential for cell-to-cell communication in plants (3). The mechanisms driving StREM1.3 association with PM is still an open question. It was shown recently that a domain of 28 residues at the C-terminus of the potato (RemCA) is required and sufficient for anchoring to the PM (4). Here we combined experimental and in silico biophysics to unravel the molecular bases of RemCA membrane binding. Biomimetic membrane models of plant PM such as monolayers and liposomes were used with various biophysical techniques (Langmuir monolayer technique, Fourier-transformed infrared spectroscopy, circular dichroïsm) and modeling tools (home-made methods and molecular dynamics) (5) to answer to three questions: (i) What is the conformation adopted by RemCA within a membrane?, (ii) Is there any membrane lipid specificity in the RemCA-membrane binding? (iii) What is the role of the two different RemCA domains in the interaction? Results show that RemCA displays a preference for plant phosphoinositide and sitosterol-enriched inner leaflet plasma membrane rafts. Within the membrane, the C-terminal and the N-terminal domains adopt a random coil and a -helical conformation respectively. The C-terminal domain acts as a driver to bind RemCA to the membrane while the N-terminal domain stabilizes the peptide at the membrane. Lysine residues have a crucial importance in this interaction. References (1) Raffaele et al., Plant Physiol., 2007, 145: 593–600 (2) Raffaela et al., Plant Cell, 2009, 21: 1541–1555. (3) Maule, Curr. Opin. Plant Biol., 2008, 11: 680–686. (4) Perraki et al., Plant Physiology, 2012, 160 : 624-637. (5) Deleu et al., Biochim. Biophys. Acta – Biomembranes, 2014, 1838 : 3171-3190. [less ▲]

Detailed reference viewed: 65 (5 ULg)
Full Text
Peer Reviewed
See detailSpectrofluorimetric and Zeta potential studies of alkylbetainate chloreide surfactants interaction with model membranes
Nsimba Zakanda, Francis; Lins, Laurence ULg; Razafindralambo, Hary et al

in Journal of Colloid Science and Biotechnology (2015), 4

Detailed reference viewed: 61 (16 ULg)
Peer Reviewed
See detailSurfactin: a receptor-independent bacterial elicitor of plant immunity?
Luzuriaga Loaiza, Walter ULg; Legras, Aurelien; Crowet, Jean-Marc ULg et al

Poster (2015, May 13)

Detailed reference viewed: 44 (3 ULg)
Full Text
Peer Reviewed
See detailInteractions of natural rhamnolpids produced by Pseudomonas aeruginosa with plant model membranes
Polo Lozano, Damien ULg; Nasir, Mehmet Nail ULg; Deleu, Magali ULg et al

Poster (2015, January 30)

It is well known that chemical pesticides have harmful effects on human health and environment. In this context, the interest for alternative products such as biopesticides is increasing. Among them ... [more ▼]

It is well known that chemical pesticides have harmful effects on human health and environment. In this context, the interest for alternative products such as biopesticides is increasing. Among them, elicitors act on the plants by inducing systemic resistance against diseases caused by fungal, viral, bacterial agents and insects. Rhamnolipids are surface active molecules produced mainly by various strains of the bacterium Pseudomonas aeruginosa. These secondary metabolites are composed of one to three fatty acids with various chain lengths linked through a glycosidic bond to one or two rhamnose moieties. The fatty acids are linked together through an ester bond. These molecules have shown several biological activities including plant defense stimulation. It has been suggested that this elicitor activity could be related to an interaction of rhamnolipids with the lipid bilayer of the plant plasma membrane (PPM) and lead to its destabilization, which can activate the plant defense signaling pathways. In this context, interactions of two rhamnolipids (Rha-C10-C10 and Rha-Rha-C10-C10) with biomimetic membranes of PPM such as Langmuir monolayers and multilayers were investigated using biophysical and in silico approaches. [less ▲]

Detailed reference viewed: 95 (8 ULg)
Full Text
See detailStructure predictions of membrane domains of proteins from the Divisome and BlaR
Crowet, Jean-Marc ULg; Dony, Nicolas; Joris, Bernard ULg et al

Poster (2014, November 28)

Detailed reference viewed: 4 (0 ULg)
Peer Reviewed
See detailSurfactin interaction with model plant plasma membrane
Luzuriaga Loaiza, Walter ULg; Nasir, Mehmet Nail ULg; Lins, Laurence ULg et al

Poster (2014, October 20)

Detailed reference viewed: 18 (2 ULg)
Peer Reviewed
See detailAnalysis of the interactions of natural elicitor rhamnolipids with plant plasma membranes by in silico methods
Polo Lozano, Damien ULg; Nasir, Mehmet Nail ULg; Deleu, Magali ULg et al

Poster (2014, October 20)

Rhamnolipids are surface active molecules produced mainly by various strains of the bacterium Pseudomonas aeruginosa. These secondary metabolites are composed of one to three fatty acids with various ... [more ▼]

Rhamnolipids are surface active molecules produced mainly by various strains of the bacterium Pseudomonas aeruginosa. These secondary metabolites are composed of one to three fatty acids with various chain lengths linked through a glycosidic bond to one or two rhamnose moieties. The fatty acids are linked together through an ester bond. These molecules have shown several biological activities including plant defense stimulation. It has be suggested that this elicitor activity could be related to an interaction of rhamnolipids with the lipid bilayer of the plant plasma membrane (PPM) and lead to its destabilization, which can activate the plant defense signaling pathways. In this context, interactions of two rhamnolipids (Rha-C10-C10 and Rha-Rha-C10-C10) with membrane models and lipidic constituents of the PPM were investigated using in silico approaches. Most probable chemical structures of the rhamnolipids were determined using the STRUCTURE TREE procedure according to the molecule potential energy. The ability of these rhamnolipid structures to insert within the PPM was assessed using IMPALA simulations. IMPALA uses a membrane model in which phospholipids molecules are implicitly modeled by an empirical function and the membrane properties are modeled by energetic restraints. The ability of each rhamnolipid structure to form an assembly with several PPM constituents (phospholipid (PLPC), sterols (Sitosterol, Stigmasterol, Campesterol) and sphingolipids (GIPC, Glucosylceramide)) was calculated using the HYPERMATRIX procedure, which calculate and minimize the energies of interaction between all molecules of the complex until the lowest energy structure is reached. [less ▲]

Detailed reference viewed: 123 (11 ULg)