References of "Lins, Laurence"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTilted peptides: a structural motif involved in protein membrane insertion?
Lins, Laurence ULg; Brasseur, Robert ULg

in Journal of Peptide Science : An Official Publication of the European Peptide Society (2008), 14(4), 416-22

Tilted peptides are short hydrophobic protein fragments characterized by an asymmetric distribution of their hydrophobic residues when helical. They are able to interact with a hydrophobic/hydrophilic ... [more ▼]

Tilted peptides are short hydrophobic protein fragments characterized by an asymmetric distribution of their hydrophobic residues when helical. They are able to interact with a hydrophobic/hydrophilic interface (such as a lipid membrane) and to destabilize the organized system into which they insert. They were detected in viral fusion proteins and in proteins involved in different biological processes involving membrane insertion or translocation of the protein in which they are found. In this paper, we have analysed different protein domains related to membrane insertion with regard to their tilted properties. They are the N-terminal signal peptide of the filamentous haemagglutinin (FHA), a Bordetella pertussis protein secreted in high amount and the hydrophobic domain from proteins forming pores (i.e. ColIa, Bax and Bcl-2). From the predictions and the experimental approaches, we suggest that tilted peptides found in those proteins could have a more general role in the mechanism of insertion/translocation of proteins into/across membranes. For the signal sequences, they could help the protein machinery involved in protein secretion to be more active. In the case of toroidal pore formation, they could disturb the lipids, facilitating the insertion of the other more hydrophilic helices. [less ▲]

Detailed reference viewed: 25 (1 ULg)
Full Text
Peer Reviewed
See detailCharacterization of the interactions between fluoroquinolone antibiotics and lipids: a multitechnique approach.
Bensikaddour, Hayet; Fa, Nathalie; Burton, Ingrid et al

in Biophysical Journal (2008), 94(8), 3035-46

Probing drug/lipid interactions at the molecular level represents an important challenge in pharmaceutical research and membrane biophysics. Previous studies showed differences in accumulation and ... [more ▼]

Probing drug/lipid interactions at the molecular level represents an important challenge in pharmaceutical research and membrane biophysics. Previous studies showed differences in accumulation and intracellular activity between two fluoroquinolones, ciprofloxacin and moxifloxacin, that may actually result from their differential susceptibility to efflux by the ciprofloxacin transporter. In view of the critical role of lipids for the drug cellular uptake and differences observed for the two closely related fluoroquinolones, we investigated the interactions of these two antibiotics with lipids, using an array of complementary techniques. Moxifloxacin induced, to a greater extent than ciprofloxacin, an erosion of the DPPC domains in the DOPC fluid phase (atomic force microscopy) and a shift of the surface pressure-area isotherms of DOPC/DPPC/fluoroquinolone monolayer toward lower area per molecule (Langmuir studies). These effects are related to a lower propensity of moxifloxacin to be released from lipid to aqueous phase (determined by phase transfer studies and conformational analysis) and a marked decrease of all-trans conformation of acyl-lipid chains of DPPC (determined by ATR-FTIR) without increase of lipid disorder and change in the tilt between the normal and the germanium surface (also determined by ATR-FTIR). All together, differences of ciprofloxacin as compared to moxifloxacin in their interactions with lipids could explain differences in their cellular accumulation and susceptibility to efflux transporters. [less ▲]

Detailed reference viewed: 45 (2 ULg)
Full Text
Peer Reviewed
See detailEffects Of Six Apoa5 Variants, Identified In Patients With Severe Hypertriglyceridemia, On In Vitro Lipoprotein Lipase Activity And Receptor Binding
Dorfmeister, B.; Zeng, Ww.; Dichlberger, A. et al

in Arteriosclerosis, Thrombosis, and Vascular Biology (2008), 28(10), 1866-71

OBJECTIVE: The purpose of this study was to identify rare APOA5 variants in 130 severe hypertriglyceridemic patients by sequencing, and to test their functionality, since no patient recall was possible ... [more ▼]

OBJECTIVE: The purpose of this study was to identify rare APOA5 variants in 130 severe hypertriglyceridemic patients by sequencing, and to test their functionality, since no patient recall was possible. METHODS AND RESULTS: We studied the impact in vitro on LPL activity and receptor binding of 3 novel heterozygous variants, apoAV-E255G, -G271C, and -H321L, together with the previously reported -G185C, -Q139X, -Q148X, and a novel construct -Delta139 to 147. Using VLDL as a TG-source, compared to wild type, apoAV-G255, -L321 and -C185 showed reduced LPL activation (-25% [P=0.005], -36% [P<0.0001], and -23% [P=0.02]), respectively). ApoAV-C271, -X139, -X148, and Delta139 to 147 had little affect on LPL activity, but apoAV-X139, -X148, and -C271 showed no binding to LDL-family receptors, LR8 or LRP1. Although the G271C proband carried no LPL and APOC2 mutations, the H321L carrier was heterozygous for LPL P207L. The E255G carrier was homozygous for LPL W86G, yet only experienced severe hypertriglyceridemia when pregnant. CONCLUSIONS: The in vitro determined function of these apoAV variants only partly explains the high TG levels seen in carriers. Their occurrence in the homozygous state, coinheritance of LPL variants or common APOA5 TG-raising variant in trans, appears to be essential for their phenotypic expression. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailRelationships between the orientation and the structural properties of peptides and their membrane interactions.
Lins, Laurence ULg; Decaffmeyer, Marc ULg; Thomas, Annick ULg et al

in Biochimica et biophysica acta (2008), 1778(7-8), 1537-44

Physical properties of membranes, such as fluidity, charge or curvature influence their function. Proteins and peptides can modulate those properties and conversely, the lipids can affect the activity and ... [more ▼]

Physical properties of membranes, such as fluidity, charge or curvature influence their function. Proteins and peptides can modulate those properties and conversely, the lipids can affect the activity and/or the structure of the former. Tilted peptides are short hydrophobic protein fragments characterized by an asymmetric distribution of their hydrophobic residues when helical. They were detected in viral fusion proteins and in proteins involved in different biological processes that need membrane destabilization. Those peptides and non lamellar lipids such as PE or PA appear to cooperate in the lipid destabilization process by enhancing the formation of negatively-curved domains. Such highly bent lipidic structures could favour the formation of the viral fusion pore intermediates or that of toroidal pores. Structural flexibility appears as another crucial property for the interaction of peptides with membranes. Computational analysis on another kind of lipid-interacting peptides, i.e. cell penetrating peptides (CPP) suggests that peptides being conformationally polymorphic should be more prone to traverse the bilayer. Future investigations on the structural intrinsic properties of tilted peptides and the influence of CPP on the bilayer organization using the techniques described in this chapter should help to further understand the molecular determinants of the peptide/lipid inter-relationships. [less ▲]

Detailed reference viewed: 15 (1 ULg)
Full Text
Peer Reviewed
See detailThe Minimal Fusion Peptide Of Simian Immunodeficiency Virus Corresponds To The 11 First Residues Of Gp32
Lorin, A.; Lins, Laurence ULg; Stroobant, V. et al

in Journal of Peptide Science (2008), 14(4), 423-8

We had previously predicted successfully the minimal fusion peptides (FPs) of the human immunodeficiency virus 1 (HIV-1) gp41 and the bovine leukemia virus (BLV) gp30 using an original approach based on ... [more ▼]

We had previously predicted successfully the minimal fusion peptides (FPs) of the human immunodeficiency virus 1 (HIV-1) gp41 and the bovine leukemia virus (BLV) gp30 using an original approach based on the obliquity/fusogenicity relationship of tilted peptides. In this paper, we have used the same method to predict the shortest FP capable of inducing optimal fusion in vitro of the simian immunodeficiency virus (SIV) mac isolate and of other SIVs and human immunodeficiency virus (HIV-2) isolates. In each case, the 11-residue-long peptide was predicted as the minimal FP. For the SIV mac isolate, liposome lipid-mixing and leakage assays confirmed that this peptide is the shortest peptide inducing optimal fusion in vitro, being therefore the minimal FP. These results are another piece of evidence that the tilted properties of FPs are important for the fusion process and that our method can be used to predict the minimal FPs of other viruses. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailIn Silico tilted properties of the 67-78 fragment of alpha-synuclein are responsible for membrane destabilization and neurotoxicity
Crowet, Jean-Marc ULg; Lins, Laurence ULg; Dupiereux-Fettweis, Ingrid ULg et al

in Proteins-Structure Function and Bioinformatics (2007), 68(4), 936-947

Alpha-synuclein is a 140 residue protein associated with Parkinson's disease. Intraneural inclusions called Lewy bodies and Lewy neurites are mainly composed of alpha-synuclein aggregated into amyloid ... [more ▼]

Alpha-synuclein is a 140 residue protein associated with Parkinson's disease. Intraneural inclusions called Lewy bodies and Lewy neurites are mainly composed of alpha-synuclein aggregated into amyloid fibrils. Other amyloidogenic proteins, such as the beta amyloid peptide involved in Alzheimer's disease and the prion protein (PrP) associated with Creuztfeldt-Jakob's disease, are known to possess "tilted peptides". These peptides are short protein fragments that adopt an oblique orientation at a hydrophobic/hydrophilic interface, which enables destabilization of the membranes. In this paper, sequence analysis and molecular modelling predict that the 67-78 fragment of alpha-synuclein is a tilted peptide. Its destabilizing properties were tested experimentally. The alpha-synuclein 67-78 peptide is able to induce lipid mixing and leakage of unilamellar liposomes. The neuronal toxicity, studied using human neuroblastoma cells, demonstrated that the alpha-synuclein 67-78 peptide induces neurotoxicity. A mutant designed by molecular modelling to be amphipathic was shown to be significantly less fusogenic and toxic than the wild type. In conclusion, we have identified a tilted peptide in alpha-synuclein, which could be involved in the toxicity induced during amyloidogenesis of alpha-synuclein. [less ▲]

Detailed reference viewed: 52 (17 ULg)
See detailAntiangiogenic peptides
Martial, Joseph ULg; Struman, Ingrid ULg; Nguyen, Ngoc-Quynh-Nhu ULg et al

Patent (2007)

The present invention refers to antiangiogenic peptides, especially to tilted peptides having antiangiogenic properties and peptides from the prolactin/growth hormone familiy having antiangiogenic ... [more ▼]

The present invention refers to antiangiogenic peptides, especially to tilted peptides having antiangiogenic properties and peptides from the prolactin/growth hormone familiy having antiangiogenic properties. [less ▲]

Detailed reference viewed: 18 (2 ULg)
Peer Reviewed
See detailPeculiar hydrophobic properties of the 67-78 fragment of α-synuclein are responsible for membrane destabilization and neurotoxicity
Crowet, Jean-Marc ULg; Lins, Laurence ULg; Dupiereux-Fettweis, Ingrid ULg et al

Poster (2007, March 14)

α-synuclein is a 140 residue protein linked to Parkinson’s disease. Intraneural inclusions called Lewy bodies and Lewy neurites are mainly composed of α-synuclein aggregated in amyloid fibrils. Few years ... [more ▼]

α-synuclein is a 140 residue protein linked to Parkinson’s disease. Intraneural inclusions called Lewy bodies and Lewy neurites are mainly composed of α-synuclein aggregated in amyloid fibrils. Few years ago, tilted peptides have been detected in two other amyloidogenic proteins : the amyloid β peptide involved in Alzheimer’s disease, and the PrP protein linked to Creuztfeldt-Jakob’s disease. Tilted peptides are short protein fragments that adopt an oblique orientation when inserted into biological membranes. Tilted peptides are able to destabilize membranes. In this study, we predicted by sequence analysis and molecular modelling that the 67-78 fragment of α-synuclein is a tilted peptide. Like most of them, the α-syn 67-78 peptide is able to induce lipid mixing and leakage of unilamellar liposomes. A mutant designed by molecular modelling to decrease the destabilizing properties of the peptide was shown to be significantly less fusogenic. The neuronal toxicity was studied using human neuroblastoma cells and we demonstrated that the α-syn 67-78 peptide induces neurotoxicity. In conclusion, we have identified a tilted peptide in α-synuclein which could be involved in the toxicity induced during amyloidogenesis of α-synuclein. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailDetermination Of The Minimal Fusion Peptide Of Bovine Leukemia Virus Gp30
Lorin, A.; Lins, Laurence ULg; Stroobant, V. et al

in Biochemical and Biophysical Research Communications (2007), 355(3), 649-53

In this study, we determined the minimal N-terminal fusion peptide of the gp30 of the bovine leukemia virus on the basis of the tilted peptide theory. We first used molecular modelling to predict that the ... [more ▼]

In this study, we determined the minimal N-terminal fusion peptide of the gp30 of the bovine leukemia virus on the basis of the tilted peptide theory. We first used molecular modelling to predict that the gp30 minimal fusion peptide corresponds to the 15 first residues. Liposome lipid-mixing and leakage assays confirmed that the 15-residue long peptide induces fusion in vitro and that it is the shortest peptide inducing optimal fusion since longer peptides destabilize liposomes to the same extent but not shorter ones. The 15-residue long peptide can thus be considered as the minimal fusion peptide. The effect of mutations reported in the literature was also investigated. Interestingly, mutations related to glycoproteins unable to induce syncytia in cell-cell fusion assays correspond to peptides predicted as non-tilted. The relationship between obliquity and fusogenicity was also confirmed in vitro for one tilted and one non-tilted mutant peptide. [less ▲]

Detailed reference viewed: 1 (0 ULg)
Full Text
Peer Reviewed
See detailDecrease Of Elastic Moduli Of Dopc Bilayers Induced By A Macrolide Antibiotic, Azithromycin
Fa, N.; Lins, Laurence ULg; Courtoy, Pj. et al

in Biochimica et Biophysica Acta-Biomembranes (2007), 1768(7), 1830-8

The elastic properties of membrane bilayers are key parameters that control its deformation and can be affected by pharmacological agents. Our previous atomic force microscopy studies revealed that the ... [more ▼]

The elastic properties of membrane bilayers are key parameters that control its deformation and can be affected by pharmacological agents. Our previous atomic force microscopy studies revealed that the macrolide antibiotic, azithromycin, leads to erosion of DPPC domains in a fluid DOPC matrix [A. Berquand, M. P. Mingeot-Leclercq, Y. F. Dufrene, Real-time imaging of drug-membrane interactions by atomic force microscopy, Biochim. Biophys. Acta 1664 (2004) 198-205.]. Since this observation could be due to an effect on DOPC cohesion, we investigated the effect of azithromycin on elastic properties of DOPC giant unilamellar vesicles (GUVs). Microcinematographic and morphometric analyses revealed that azithromycin addition enhanced lipid membranes fluctuations, leading to eventual disruption of the largest GUVs. These effects were related to change of elastic moduli of DOPC, quantified by the micropipette aspiration technique. Azithromycin decreased both the bending modulus (k(c), from 23.1+/-3.5 to 10.6+/-4.5 k(B)T) and the apparent area compressibility modulus (K(app), from 176+/-35 to 113+/-25 mN/m). These data suggested that insertion of azithromycin into the DOPC bilayer reduced the requirement level of both the energy for thermal fluctuations and the stress to stretch the bilayer. Computer modeling of azithromycin interaction with DOPC bilayer, based on minimal energy, independently predicted that azithromycin (i) inserts at the interface of phospholipid bilayers, (ii) decreases the energy of interaction between DOPC molecules, and (iii) increases the mean surface occupied by each phospholipid molecule. We conclude that azithromycin inserts into the DOPC lipid bilayer, so as to decrease its cohesion and to facilitate the merging of DPPC into the DOPC fluid matrix, as observed by atomic force microscopy. These investigations, based on three complementary approaches, provide the first biophysical evidence for the ability of an amphiphilic antibiotic to alter lipid elastic moduli. This may be an important determinant for drug: lipid interactions and cellular pharmacology. [less ▲]

Detailed reference viewed: 4 (1 ULg)
Full Text
Peer Reviewed
See detailLipid-Destabilizing Properties Of The Hydrophobic Helices H8 And H9 From Colicin E1
Lins, Laurence ULg; El Kirat, K.; Charloteaux, Benoît ULg et al

in Molecular Membrane Biology (2007), 24(5-6), 419-30

Colicins are toxic proteins produced by Escherichia coli that must cross the membrane to exert their activity. The lipid insertion of their pf domain is linked to a conformational change which enables the ... [more ▼]

Colicins are toxic proteins produced by Escherichia coli that must cross the membrane to exert their activity. The lipid insertion of their pf domain is linked to a conformational change which enables the penetration of a hydrophobic hairpin. They provide useful models to more generally study insertion of proteins, channel formation and protein translocation in and across membranes. In this paper, we study the lipid-destabilizing properties of helices H8 and H9 forming the hydrophobic hairpin of colicin E1. Modelling analysis suggests that those fragments behave like tilted peptides. The latter are characterized by an asymmetric distribution of their hydrophobic residues when helical. They are able to interact with a hydrophobic/hydrophilic interface (such as a lipid membrane) and to destabilize the organized system into which they insert. Fluorescence techniques using labelled liposomes clearly show that H9, and H8 to a lesser extent, destabilize lipid particles, by inducing fusion and leakage. AFM assays clearly indicate that H8 and especially H9 induce membrane fragilization. Holes in the membrane are even observed in the presence of H9. This behaviour is close to what is seen with viral fusion peptides. Those results suggest that the peptides could be involved in the toroidal pore formation of colicin E1, notably by disturbing the lipids and facilitating the insertion of the other, more hydrophilic, helices that will form the pore. Since tilted, lipid-destabilizing fragments are also common to membrane proteins and to signal sequences, we suggest that tilted peptides should have an ubiquitous role in the mechanism of insertion of proteins into membranes. [less ▲]

Detailed reference viewed: 17 (0 ULg)
See detailPeculiar hydrophobic properties of the 67-78 fragment of α-synuclein are responsible for membrane destabilization and neurotoxicity
Crowet, Jean-Marc ULg; Lins, Laurence ULg; Dupiereux-Fettweis, Ingrid ULg et al

Poster (2006, December 18)

α-synuclein is a 140 residue protein linked to Parkinson’s disease. Intraneural inclusions called Lewy bodies and Lewy neurites are mainly composed of α-synuclein aggregated in amyloid fibrils. Few years ... [more ▼]

α-synuclein is a 140 residue protein linked to Parkinson’s disease. Intraneural inclusions called Lewy bodies and Lewy neurites are mainly composed of α-synuclein aggregated in amyloid fibrils. Few years ago, tilted peptides have been detected in two other amyloidogenic proteins : the amyloid β peptide involved in Alzheimer’s disease, and the PrP protein linked to Creuztfeldt-Jakob’s disease. Tilted peptides are short protein fragments that adopt an oblique orientation when inserted into biological membranes. Tilted peptides are able to destabilize membranes. In this study, we predicted by sequence analysis and molecular modelling that the 67-78 fragment of α-synuclein is a tilted peptide. Like most of them, the α-syn 67-78 peptide is able to induce lipid mixing and leakage of unilamellar liposomes. A mutant designed by molecular modelling to decrease the destabilizing properties of the peptide was shown to be significantly less fusogenic. The neuronal toxicity was studied using human neuroblastoma cells and we demonstrated that the α-syn 67-78 peptide induces neurotoxicity. In conclusion, we have identified a tilted peptide in α-synuclein which could be involved in the toxicity induced during amyloidogenesis of α-synuclein. [less ▲]

Detailed reference viewed: 8 (1 ULg)
Full Text
Peer Reviewed
See detailThe Siv Tilted Peptide Induces Cylindrical Reverse Micelles In Supported Lipid Bilayers
El Kirat, K.; Dufrene, Yf.; Lins, Laurence ULg et al

in Biochemistry (2006), 45(30), 9336-41

Elucidation of the molecular mechanism leading to biomembrane fusion is a challenging issue in current biomedical research in view of its involvement in controlling cellular functions and in mediating ... [more ▼]

Elucidation of the molecular mechanism leading to biomembrane fusion is a challenging issue in current biomedical research in view of its involvement in controlling cellular functions and in mediating various important diseases. According to the generally admitted stalk mechanism described for membrane fusion, negatively curved lipids may play a central role during the early steps of the process. In this study, we used atomic force microscopy (AFM) to address the crucial question of whether negatively curved lipids influence the interaction of the simian immunodeficiency virus (SIV) fusion peptide with model membranes. To this end, dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers containing 0.5 mol % dioleoylphosphatidic acid (DOPA) were incubated with the SIV peptide and imaged in real time using AFM. After a short incubation time, we observed a 1.9 nm reduction in the thickness of the DPPC domains, reflecting either interdigitation or fluidization of lipids. After longer incubation times, these depressed DPPC domains evolved into elevated domains, composed of nanorod structures protruding several nanometers above the bilayer surface and attributed to cylindrical reverse micelles. Such DOPC/DPPC/DOPA bilayer modifications were never observed with nontilted peptides. Accordingly, this is the first time that AFM reveals the formation of cylindrical reverse micelles in lipid bilayers promoted by fusogenic peptides. [less ▲]

Detailed reference viewed: 11 (1 ULg)
Full Text
Peer Reviewed
See detailLipid-Destabilising Properties Of A Peptide With Structural Plasticity
Lorin, A.; Thomas, Annick ULg; Stroobant, V. et al

in Chemistry and Physics of Lipids (2006), 141(1-2), 185-96

The Chameleon peptide (Cham) is a peptide designed from two regions of the GB1 protein, one folded as an alpha-helix and the other as a beta structure. Depending on the environment, the Cham peptide ... [more ▼]

The Chameleon peptide (Cham) is a peptide designed from two regions of the GB1 protein, one folded as an alpha-helix and the other as a beta structure. Depending on the environment, the Cham peptide adopts an alpha or a beta conformation when inserted in different locations of GB1. This environment dependence is also observed for tilted peptides. These short protein fragments, able to destabilise organised system, are mainly folded in beta structure in water and in alpha helix in a hydrophobic environment, like the lipid bilayer. In this paper, we tested whether the Cham peptide can be qualified as a tilted peptide. For this, we have compared the properties of Cham peptide (hydrophobicity, destabilising properties, conformation) to those of tilted peptides. The results suggest that Cham is a tilted peptide. Our study, together the presence of tilted fragments in transconformational proteins, suggests a relationship between tilted peptides and structural lability. [less ▲]

Detailed reference viewed: 16 (2 ULg)
Full Text
Peer Reviewed
See detailAnti-Hemostatic Effects Of A Serpin From The Saliva Of The Tick Ixodes Ricinus
Prevot, Pp.; Adam, B.; Boudjeltia, Kz. et al

in Journal of Biological Chemistry (2006), 281(36), 26361-9

Serpins (serine protease inhibitors) are a large family of structurally related proteins found in a wide variety of organisms, including hematophagous arthropods. Protein analyses revealed that Iris ... [more ▼]

Serpins (serine protease inhibitors) are a large family of structurally related proteins found in a wide variety of organisms, including hematophagous arthropods. Protein analyses revealed that Iris, previously described as an immunomodulator secreted in the tick saliva, is related to the leukocyte elastase inhibitor and possesses serpin motifs, including the reactive center loop (RCL), which is involved in the interaction between serpins and serine proteases. Only serine proteases were inhibited by purified recombinant Iris (rIris), whereas mutants L339A and A332P were found devoid of any protease inhibitory activity. The highest Ka was observed with human leukocyte-elastase, suggesting that elastase-like proteases are the natural targets of Iris. In addition, mutation M340R completely changed both Iris substrate specificity and affinity. This likely identified Met-340 as amino acid P1 in the RCL. The effects of rIris and its mutants were also tested on primary hemostasis, blood clotting, and fibrinolysis. rIris increased platelet adhesion, the contact phase-activated pathway of coagulation, and fibrinolysis times in a dose-dependent manner, whereas rIris mutant L339A affected only platelet adhesion. Taken together, these results indicate that Iris disrupts coagulation and fibrinolysis via the anti-proteolytic RCL domain. One or more other domains could be responsible for primary hemostasis inhibition. To our knowledge, this is the first ectoparasite serpin that interferes with both hemostasis and the immune response. [less ▲]

Detailed reference viewed: 13 (0 ULg)
Full Text
Peer Reviewed
See detailThe N-terminal 12 residue long peptide of HIV gp41 is the minimal peptide sufficient to induce significant T-cell-like membrane destabilization in vitro.
Charloteaux, Benoît ULg; Lorin, A.; Crowet, Jean-Marc ULg et al

in Journal of molecular biology (2006), 359(3), 597-609

Here, we predicted the minimal N-terminal fragment of gp41 required to induce significant membrane destabilization using IMPALA. This algorithm is dedicated to predict peptide interaction with a membrane ... [more ▼]

Here, we predicted the minimal N-terminal fragment of gp41 required to induce significant membrane destabilization using IMPALA. This algorithm is dedicated to predict peptide interaction with a membrane. We based our prediction of the minimal fusion peptide on the tilted peptide theory. This theory proposes that some protein fragments having a peculiar distribution of hydrophobicity adopt a tilted orientation at a hydrophobic/hydrophilic interface. As a result of this orientation, tilted peptides should disrupt the interface. We analysed in silico the membrane-interacting properties of gp41 N-terminal peptides of different length derived from the isolate BRU and from an alignment of 710 HIV strains available on the Los Alamos National Laboratory. Molecular modelling results indicated that the 12 residue long peptide should be the minimal fusion peptide. We then assayed lipid-mixing and leakage of T-cell-like liposomes with N-terminal peptides of different length as first challenge of our predictions. Experimental results confirmed that the 12 residue long peptide is necessary and sufficient to induce membrane destabilization to the same extent as the 23 residue long fusion peptide. In silico analysis of some fusion-incompetent mutants presented in the literature further revealed that they cannot insert into a modelled membrane correctly tilted. According to this work, the tilted peptide model appears to explain at least partly the membrane destabilization properties of HIV fusion peptide. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
Peer Reviewed
See detail"De novo" design of peptides with specific lipid-binding properties
Lins, Laurence ULg; Charloteaux, Benoît ULg; Heinen, C. et al

in Biophysical Journal (2006), 90(2), 470-479

In this study, we describe an in silico method to design peptides that can be made of non-natural amino acids and elicit specific membrane-interacting properties. The originality of the method holds in ... [more ▼]

In this study, we describe an in silico method to design peptides that can be made of non-natural amino acids and elicit specific membrane-interacting properties. The originality of the method holds in the capacities developed to design peptides from any non-natural amino acids as easily as from natural ones, and to test the structure stability by an angular dynamics rather than the currently-used molecular dynamics. The goal of this study was to design a non-natural tilted peptide. Tilted peptides are short protein fragments able to destabilize lipid membranes and characterized by an asymmetric distribution of hydrophobic residues along their helix structure axis. The method is based on the random generation of peptides and their election on three main criteria: mean hydrophobicity and the presence of at least one polar residue; tilted insertion at the level of the acyl chains of lipids of a membrane; and conformational stability in that hydrophobic phase. From 10,000,000 randomly-generated peptides, four met all the criteria. One was synthesized and tested for its lipid-destabilizing properties. Biophysical assays showed that the "de novo" peptide made of non-natural amino acids is helical either in solution or intolipids as tested by Fourier transform infrared spectroscopy and is able to induce liposome fusion. These results are in agreement with the calculations andvalidate the theoretical approach. [less ▲]

Detailed reference viewed: 18 (2 ULg)