References of "Lecomte, Philippe"
     in
Bookmark and Share    
See detailSynthesis of novel amphiphilic mikto-arm star-shaped copolymers
Riva, Raphaël ULg; Lazarri, Wenda; Billiet, Leen et al

Poster (2009, December 14)

Detailed reference viewed: 38 (7 ULg)
Full Text
Peer Reviewed
See detailControlled Synthesis of AB2 amphiphilic triarm star-shaped block copolymers by ring-opening polymerization
Petrova, Svetla; Riva, Raphaël ULg; Jérôme, Christine ULg et al

in European Polymer Journal (2009), 45(12), 3442-3450

This paper describes the synthesis of a novel amphiphilic AB2 triarm star-shaped copolymer with A = non-toxic and biocompatible hydrophilic poly(ethylene oxide) (PEO) and B = biodegradable and hydrophobic ... [more ▼]

This paper describes the synthesis of a novel amphiphilic AB2 triarm star-shaped copolymer with A = non-toxic and biocompatible hydrophilic poly(ethylene oxide) (PEO) and B = biodegradable and hydrophobic poly(ε-caprolactone) (PCL). A series of AB2 triarm star-shaped copolymers with different molecular weights for the PCL block were successfully synthesized by a three-step procedure. α-methoxy-ω-epoxy-poly(ethylene oxide) (PEO-epoxide) was first synthesized by the nucleophilic substitution of α-methoxy-ω-hydroxy-poly(ethylene oxide) (MPEO) on epichlorohydrin. In a second step, the α-methoxy-ω,ω’-dihydroxy-poly(ethylene oxide) (PEO(OH)2) macroinitiator was prepared by the selective hydrolysis of the ω-epoxy end-group of the PEO-epoxide chain. Finally, PEO(OH)2 was used as a macroinitiator for the ring-opening polymerization (ROP) of ε-caprolactone (εCL) catalyzed by tin octoaote (Sn(Oct)2). PEO-epoxide, PEO(OH)2 and the AB2 triarm star-shaped copolymers were assessed by 1H NMR spectroscopy, size exclusion chromatography (SEC) and MALDI-TOF. The behavior of the AB2 triarm star-shaped copolymer in aqueous solution was studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM). [less ▲]

Detailed reference viewed: 111 (21 ULg)
Full Text
See detailFunctionlization and grafting of polylactide by click chemistry
Riva, Raphaël ULg; Croisier, Florence ULg; Jérôme, Christine ULg et al

Conference (2009, November 19)

Detailed reference viewed: 70 (14 ULg)
See detailNouveaux développements pour la synthèse des matériaux polymères du futur
Lecomte, Philippe ULg

Conference (2009, November 11)

Detailed reference viewed: 23 (4 ULg)
Full Text
Peer Reviewed
See detailFirst example of “click” copper(I) catalyzed azide-alkyne cycloaddition in supercritical carbon dioxide: Application to the functionalization of aliphatic polyesters
Grignard, Bruno ULg; Schmeits, Stephanie ULg; Riva, Raphaël ULg et al

in Green Chemistry (2009), 11

The modification of aliphatic polyesters by the copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) was successfully implemented in supercritical carbon dioxide (scCO2). Due to the remarkable ... [more ▼]

The modification of aliphatic polyesters by the copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) was successfully implemented in supercritical carbon dioxide (scCO2). Due to the remarkable properties of scCO2, the CuAAC reaction turned out to be quantitative even though the aliphatic polyesters used in this work were insoluble in scCO2. Interestingly enough, the conditions were mild enough to prevent polymer degradation from occurring and finally, efficient removal of the catalyst (>96%) was achieved by scCO2 extraction. [less ▲]

Detailed reference viewed: 103 (34 ULg)
Full Text
See detailSynthesis of functionalized polyesters by the "click" copper-catalyzed alkyne-azide cycloaddition
Lecomte, Philippe ULg; Riva, Raphaël ULg; Jérôme, Christine ULg

in Khosravi, Ezat; Yagci, Yusuf; Savelyev, Yuri (Eds.) New smart materials via metal mediated macromolecular engineering (2009)

The functionalization of aliphatic polyesters by the copper-mediated azide–alkyne Huisgen’s cycloaddition is very efficient under mild conditions, which prevents degradation from occurring. The ... [more ▼]

The functionalization of aliphatic polyesters by the copper-mediated azide–alkyne Huisgen’s cycloaddition is very efficient under mild conditions, which prevents degradation from occurring. The implementation of this reaction requires the synthesis of aliphatic polyesters bearing pendant alkynes and azides, which can be carried out either by polycondensation or by ring-opening polymerization. [less ▲]

Detailed reference viewed: 48 (11 ULg)
Full Text
See detailRecent advances in the functionalization of aliphatic polyesters by ring-opening polymerization
Lecomte, Philippe ULg; Jérôme, Christine ULg

in Khosravi, Ezat; Yagci, Yusuf; Savelyev, Yuri (Eds.) New smart materials via metal mediated macromolecular engineering (2009)

Two main strategies aiming at synthesizing aliphatic polyesters bearing pendant functional groups will be reported. The first one is based on the synthesis and the polymerization of lactones substituted ... [more ▼]

Two main strategies aiming at synthesizing aliphatic polyesters bearing pendant functional groups will be reported. The first one is based on the synthesis and the polymerization of lactones substituted by various functional groups. The direct grafting of functional groups onto aliphatic polyesters is the second strategy. Last but not least, the association of these two strategies is very promising in order to overcome their respective limitations. [less ▲]

Detailed reference viewed: 37 (17 ULg)
Full Text
See detailα-chloro-ε-caprolactone, a versatile precursor for grafting of aliphatic polyesters
Riva, Raphaël ULg; Lenoir, Sandrine ULg; Lecomte, Philippe ULg et al

Poster (2009, September 17)

Macromolecular engineering is one of the most powerful tool to synthesise many polymers of various architectures and with tailored properties. This contribution aims at reporting on a novel strategy for ... [more ▼]

Macromolecular engineering is one of the most powerful tool to synthesise many polymers of various architectures and with tailored properties. This contribution aims at reporting on a novel strategy for the macromolecular engineering of poly-ε-caprolactone (PCL) which is based on the use of a dual monomer / initiator compound, α-chloro-ε-caprolactone (αClεCL). Indeed, αClεCL is not only polymerizable by ring opening initiated by metal alkoxides, but it is also an initiator for the atom transfer radical polymerization (ATRP) of vinyl monomers, so leading easily to the synthesis of macromonomers. Polystyrene macromonomer has been prepared by this method and successfully copolymerized with ε-caprolactone (εCL) with formation of the corresponding grafted PCL. αClεCL is also a precursor of copolyesters with εCL that bear pendant chlorides. These (co)polyesters have been used as macroinitiators for the ATRP of methyl methacrylate in order to synthesise the corresponding graft copolymer. On the other hand, the pendant chlorides of poly(αClεCL-co-εCL) copolyesters were easily converted into azide with formation of the corresponding azide bearing copolyester. This copolyester was then reacted with an alkyne bearing an ATRP initiator by “Click chemistry”. The conversion of chlorides into more efficient ATRP initiators led to the improvement of the initiation efficiency of the macroinitiator. [less ▲]

Detailed reference viewed: 68 (15 ULg)
See detailMacromolecular engineering of aliphatic polyesters by click chemistry
Lecomte, Philippe ULg

Scientific conference (2009, September 10)

Detailed reference viewed: 23 (9 ULg)
Full Text
See detailNew developments in the functionalization of aliphatic polyesters by "click" copper-catalyzed azide-alkyne cycloaddition
Lecomte, Philippe ULg; Riva, Raphaël ULg; Schmeits, Stephanie ULg et al

Conference (2009, June 03)

Nowadays, biodegradable and biocompatible aliphatic polyesters are widely used as environmentally friendly thermoplastics and biomaterials. Nevertheless, the absence of any pendant functional group is a ... [more ▼]

Nowadays, biodegradable and biocompatible aliphatic polyesters are widely used as environmentally friendly thermoplastics and biomaterials. Nevertheless, the absence of any pendant functional group is a severe limitation for the development of novel applications. Our strategy aiming at functionalizing aliphatic polyesters relies on the “click” copper-catalyzed cycloaddition (CuAAC) of alkynes duly substituted by functional groups or even chains onto PCL bearing pendant azides. The aliphatic polyesters bearing pendant azides have been very efficiently synthesized by a straightforward approach, which relies on the ring-opening copolymerization of αClεCL (or γBrεCL) and εCL (or lactide) followed by reaction with sodium azide to convert pendant chlorides or bromides into azides. The alternative reported by Emrick et al. is based on the CuAAC reaction of azides substituted by any functional group onto copolyesters of poly(ε-caprolactone) bearing pendant alkynes. Interestingly enough, Emrick et al. carried out the CuAAc reaction in water at 80°C. Unfortunately, it turned out, at least in our hands, that these conditions can not be extended to the derivatization of more sensitive aliphatic polyesters because degradation was then unavoidable. Nevertheless, we found out that degradation can be minimized whenever the CuAAC reaction is carried out in an organic solvent at lower temperature. Typically, the CuAAC reaction was carried out in DMF or THF at 35°C. Recently, it was shown that supercritical carbon dioxide can be used as a more environmentally friendly solvent than DMF or THF. The contamination by catalytic residues of aliphatic polyesters functionalized by the CuAAC reaction is a severe limitation in view of future applications, especially in the biomedical field. In the last part of this talk, a special attention will be paid on our current efforts to get rid of copper residues. [less ▲]

Detailed reference viewed: 54 (21 ULg)
Full Text
See detailFunctionalization of aliphatic polyesters by “click chemistry” in supercritical carbon dioxide
Grignard, Bruno ULg; Schmeits, Stephanie ULg; Riva, Raphaël ULg et al

Poster (2009, May 14)

The combination of ring-opening polymerization of lactones and “click” copper-catalyzed Huisgen’s [3+2] cycloaddition is known to be a very efficient strategy for the functionalization of poly(ε ... [more ▼]

The combination of ring-opening polymerization of lactones and “click” copper-catalyzed Huisgen’s [3+2] cycloaddition is known to be a very efficient strategy for the functionalization of poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA). Whenever the “click” reaction occurs in an organic solvent (THF or DMF), at relatively low temperature (35°C) and within short reaction time (2 hours), no significant degradation of polyester chains is detected. This strategy was implemented in previous works to graft alkynes substituted by different functional groups, such as hydroxyl, tertiary amines, acrylates or ammonium salts onto azide-functionalized PCL. Moreover, this approach was previously extended to the synthesis of grafted copolymers, either by the grafting of omega-alkyne-PEO onto azide-functionalized aliphatic PLA or PCL (“grafting onto” technique) either by grafting of an ATRP initiator followed by the polymerization of vinyl monomers, such as styrene (“grafting from” technique). These functionalized aliphatic polyesters are promising materials for the development of new biomedical devices. In this work, novel conditions were implemented for the “click” reaction in order to avoid the use of organic solvents and to limit the amount of catalyst remnants in functionalized aliphatic polyesters. Toward this end, if was found that the functionalization by “click” chemistry can be efficiently carried out in supercritical carbon dioxide rather than in THF or DMF. For that sake, it turned out necessary to synthesize a perfluorinated polyamine in order to solubilize the catalyst in supercritical carbon dioxide. Aliphatic polyesters are not soluble in supercritical carbon dioxide. Nevertheless, even under heterogeneous conditions, the functionalization of aliphatic polyesters by “click” chemistry is quantitative. Interestingly enough, no degradation was observed. Last but not least, the copper catalyst was easily removed by supercritical fluid extraction leading to a very low content of residual copper in the final copolyester. [less ▲]

Detailed reference viewed: 128 (16 ULg)
See detailAn analysis of the role of cyclin dependant kinase inhibitor 1B (CDKN1B) gene mutations in 86 families with familial isolated pituitary adenomas (FIPA)
Tichomirova, M. A.; Daly, Adrian ULg; Pujol, Julien ULg et al

in The Endocrine Society's 91st Annual Meeting : 10-13 juin 2009, Washington (2009)

Detailed reference viewed: 28 (7 ULg)
Full Text
See detailMetal enolates in polymer science and technology
Lecomte, Philippe ULg; Jérôme, Robert ULg

in Zabicky, Jacob (Ed.) The Chemistry of Metal Enolates (2009)

Detailed reference viewed: 13 (4 ULg)
Full Text
See detailRecent advances in the synthesis of aliphatic polyesters by “click” chemistry
Riva, Raphaël ULg; Jérôme, Christine ULg; Jérôme, Robert ULg et al

Conference (2008, September 11)

Since the discovery of Sharpless and Meldal, the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is more and more popular in the field of macromolecular engineering owing to its robustness, its ... [more ▼]

Since the discovery of Sharpless and Meldal, the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is more and more popular in the field of macromolecular engineering owing to its robustness, its high tolerance to a wide range of functional groups without any need of protecting groups and the absence of side-products. This reaction is known to be a very efficient “click” reaction as defined by Sharpless. The chemical modification of aliphatic polyesters remains, at the time being, a very difficult task to achieve because of the very limited number of efficient chemical reactions, which can be implemented in the absence of chain degradation. The main purpose of this contribution is to report on the most recent advances on the use of CuAAC to derivatize aliphatic polyesters (Scheme 1). Interestingly enough, it was recently shown that CuAAC carried out onto aliphatic polyesters attached with either azides or alkynes is very efficient under mild conditions, which limit undesirable degradation. Several functional groups were grafted onto aliphatic polyesters by CuAAC without using any protection/deprotection reactions. The CuAAC is also very efficient to prepare aliphatic polyesters with various architectures as highlighted by the synthesis of graft copolymers, star-shaped copolymers and networks. This “click” chemistry has been combined with other polymerization mechanism such as ATRP in order to extend further the range of available polymers. [less ▲]

Detailed reference viewed: 30 (11 ULg)
Full Text
See detailMacromolecular engineering of aliphatic polyesters by ring-opening polymerization
Lecomte, Philippe ULg; Jérôme, Christine ULg; Jérôme, Robert ULg

Conference (2008, September 09)

During the past few years, a steadily increasing attention was paid to the synthesis of biodegradable and biocompatible aliphatic polyesters because of potential applications as biomaterials or as ... [more ▼]

During the past few years, a steadily increasing attention was paid to the synthesis of biodegradable and biocompatible aliphatic polyesters because of potential applications as biomaterials or as environmentally friendly thermoplastics. The first purpose of this work is to show that the modification of these aliphatic polyesters by pendant functional groups is an efficient tool to tailor the main properties, including biodegradation rate, bioadhesion, hydrophilicity, degree of crystallinity. The strategies implemented for the synthesis of aliphatic polyesters bearing pendant functional groups rely on the synthesis of g-substituted e-caprolactones followed by their ring-opening polymerization and on the chemical modification of duly functionalized aliphatic polyesters.The second part of the lecture will be dedicated to some recent examples dealing with the use of functional caprolactones to prepare various architectures such as star-shaped copolymers, graft copolymers, macrocycles and networks. [less ▲]

Detailed reference viewed: 19 (8 ULg)