References of "Lecomte, Philippe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPoly(ethylene glycol) grafted polylactide based copolymers for the preparation of PLA-based nanocarriers and hybrid hydrogel
Riva, Raphaël ULg; Schmeits, Stéphanie; Croisier, Florence ULg et al

in Clinical Hemorheology and Microcirculation (2015), 60

In previous works, poly(D,L-lactide-co-?CL-poly(ethylene glycol) (poly(D,L-La-co-?PEG?CL) amphiphilic graft- 10 copolymers were successfully synthesized according to a copper azide-alkyne cycloaddition ... [more ▼]

In previous works, poly(D,L-lactide-co-?CL-poly(ethylene glycol) (poly(D,L-La-co-?PEG?CL) amphiphilic graft- 10 copolymers were successfully synthesized according to a copper azide-alkyne cycloaddition (CuAAC) strategy. This paper aims 11 at reporting on the behavior of this amphiphilic copolymer in water, which was not studied in the previous paper. Moreover, 12 the ability of the copolymer to stabilize a PLA nanoparticles aqueous suspension is presented. For this purpose, dynamic 13 light scattering (DLS) and transmission electron microscopy (TEM) are proposed to characterize the nanoparticles in solution. 14 Otherwise, the strategy developed for the synthesis of the amphiphilic copolymers was adapted and extended to the synthesis of 15 PLA-based degradable hydrogel, potentially applicable as drug-loaded degradable polymer implant. [less ▲]

Detailed reference viewed: 59 (8 ULg)
Full Text
Peer Reviewed
See detailSynthesis and tensioactive properties of PEO-b-polyphosphate copolymers
Vanslambrouck, Stéphanie ULg; Clément, Benoit; Riva, Raphaël ULg et al

in RSC Advances (2015), 5(35), 27330-37337

Poly(ethylene oxide) (PEO)-b-polyphosphate copolymers made of hydrophilic PEO and hydrophobic polyphosphates are amphiphilic copolymers prone to self-assemble in water into nanoparticles. In this work ... [more ▼]

Poly(ethylene oxide) (PEO)-b-polyphosphate copolymers made of hydrophilic PEO and hydrophobic polyphosphates are amphiphilic copolymers prone to self-assemble in water into nanoparticles. In this work, nanoparticles are obtained by the self-assembly of PEO-b-polyphosphate copolymers in water in the absence of any organic co-solvent whatever the length of the pendant alkyl chain (between 4 and 7 carbon atoms) of the polyphosphate block. Remarkably, this solvent-free process remains efficient even for the most hydrophobic polyphosphate blocks. The critical aggregation concentration (CAC) of the block copolymers was determined by pyrene probe fluorescence. Finally, the efficiency of these copolymer surfactants to decrease the air–water interface was measured by air-bubble tensiometry. [less ▲]

Detailed reference viewed: 65 (22 ULg)
Full Text
Peer Reviewed
See detailReversible cross-linking of aliphatic polyamides bearing thermo- and photoresponsive cinnamoyl moieties
Tunc, Deniz ULg; Le Coz, Cédric; Alexandre, Michaël et al

in Macromolecules (2014), 47(23), 8247-8254

Detailed reference viewed: 48 (6 ULg)
See detailRecyclable shape-memory materials based on photo or thermo-reversible crosslinking
Defize, Thomas ULg; Riva, Raphaël ULg; Wauters, Céline et al

Poster (2014, November 11)

Shape memory polymers (SMPs) are remarkable materials able to switch from a stressed deformed state (temporary shape) to their initial relaxed state (permanent shape) by the application of a stimulus ... [more ▼]

Shape memory polymers (SMPs) are remarkable materials able to switch from a stressed deformed state (temporary shape) to their initial relaxed state (permanent shape) by the application of a stimulus, such as heat or light. Typically, the shape memory property is generally observed for chemically or physically cross-linked polymers that exhibit an elastomeric behavior above a phase transition, e.g. glass or melting transition. Cross-linked semi-crystalline poly(ε-caprolactone) (PCL) is already widely studied for the development of SMPs. However, the tensile strength of standard PCL-based SMPs remains quite low, limiting their use in some applications. A convenient way to enhance the strength of SMPs relies on the introduction of nanofillers, such as silica nanoparticles, leading to an enhancement of mechanical strength. Moreover, silica nanoparticles can be advantageously used as multifunctional crosslinking nodes, with the purpose to increase the cross-linking density of the material. As most of SMPs are irreversibly cross-linked material, their reprocessing is impossible preventing any recycling. Thereby, reversible reactions, allowing the formation/cleavage of the network, raise tremendous interest in macromolecular engineering. Recently, a reversibly cross-linked 4-arm star-shaped PCL-based SMP was prepared using the Diels-Alder (DA) reaction between furan and maleimide moieties, well-known to create reversible bonds. This shape memory material demonstrated to be implementable, and so recyclable, and was characterized by excellent fixity and recovery before and after recycling experiments. However, the relatively low retro-DA temperature of the furan- maleimide adducts led to an inelastic deformation during shape memory tensile cycles. In order to get rid of this drawback, two alternative approaches were investigated. Firstly, the substitution of the DA reaction by a photo-reversible reaction, typically the photo- induced (2+2) cycloaddition of coumarins, was proposed to crosslink the PCL matrix. The second approach is based on the use of surface functionalized silica nanoparticles as crosslinking nodes with the purpose to increase the crosslinking density of the material. The network formation and cleavage were studied by solid-state NMR and rheology.4 The resulting shape memory materials were characterized by excellent one-way and two-way shape memory properties as demonstrated by dynamical mechanical analysis. [less ▲]

Detailed reference viewed: 57 (3 ULg)
See detailAdvances in the synthesis of degradable polymers for biomedical applications
Lecomte, Philippe ULg

Conference (2014, October 20)

Detailed reference viewed: 17 (5 ULg)
See detailAmphiphilic copolymers containing polyphosphates for drug delivery applications
Vanslambrouck, Stéphanie ULg; Clément, Benoit; Riva, Raphaël ULg et al

Poster (2014, September 19)

Detailed reference viewed: 21 (3 ULg)
See detailRecent development in the ring-opening polymerization of cyclic phosphates
Lecomte, Philippe ULg

Scientific conference (2014, September 09)

Detailed reference viewed: 18 (7 ULg)
Full Text
See detailMicellization of PEO-b-polyphosphate for drug delivery applications
Vanslambrouck, Stéphanie ULg; Clément, Benoit; Riva, Raphaël ULg et al

Conference (2014, July 11)

Detailed reference viewed: 35 (12 ULg)
See detailStructure-morphology relationship of polyphosphate containing polymer micelles
Vanslambrouck, Stéphanie ULg; Clément, Benoit; Riva, Raphaël ULg et al

Conference (2014, June 18)

Detailed reference viewed: 18 (5 ULg)
Full Text
See detailDrug delivery systems based on PEO-b-polyphosphate copolymers
Vanslambrouck, Stéphanie ULg; Clément, Benoit; Riva, Raphaël ULg et al

Poster (2014, May)

Detailed reference viewed: 38 (9 ULg)
Full Text
See detailReversibly cross-linked polymer micelle as smart drug dellivery device
Lecomte, Philippe ULg; Riva, Raphaël ULg; Cajot, Sébastien et al

Conference (2013, November 20)

Detailed reference viewed: 23 (8 ULg)
See detailOrganocatalyzed ring-opening polymerization of cyclic phosphate monomers
Clement, Benoît ULg; Vanslambrouck, Stéphanie ULg; Koole, Leo H. et al

Conference (2013, November 19)

Detailed reference viewed: 32 (12 ULg)
See detailDrug delivery systems based on amphiphilic polyphosphate-copolymers
Vanslambrouck, Stéphanie ULg; Clement, Benoît ULg; Riva, Raphaël ULg et al

Poster (2013, September 18)

Thanks to their biocompatibility, biodegradability and their structure similar to natural biomacromoleculesn such as nucleic acids, polyphosphates (PPhos) are of prime interest as biomaterials. In ... [more ▼]

Thanks to their biocompatibility, biodegradability and their structure similar to natural biomacromoleculesn such as nucleic acids, polyphosphates (PPhos) are of prime interest as biomaterials. In contrast to poly--caprolactone and polylactides, PPhos properties and functionality are easily tuned via the nature of the pendant group of the starting cyclic monomer. For example, by varying the length of the alkyl chain the hydrophobicity of the PPhos can be adjusted. In this work, an efficient organo-catalytic system was developed to synthesize a series of amphiphilic diblock copolymers, i.e. poly(ethylene oxide)-b-polyphosphate (PEO-b-PPhos) by ring-opening polymerization of cyclic phosphates. This novel approach prevents metallic residues to polute the final product, and which is highly desirable when biomedical applications are foreseen. For drug delivery application, the micellization of these novel diblock copolymers in aqueous media was investigated, as well as, encapsulation of an hydrophobic drug. Data on, the influence of the polyphosphate nature of the polymer on drug loading will be presented. [less ▲]

Detailed reference viewed: 81 (17 ULg)