References of "Kolh, Philippe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailModel-based diagnosis of acute pulmonary embolism and septic shock in porcine trials
Revie, JA; Stevenson, D; Chase, JG et al

in Proceedings of the Health Research Society of Christchurch Annual Scientific Session 2011 (2011)

Detailed reference viewed: 7 (2 ULg)
Full Text
Peer Reviewed
See detailProcessing aortic and pulmonary artery waveforms to derive the ventricle time-varying elastance
Stevenson, D. J.; Hann, C. E.; Chase, G. J. et al

in IFAC Proceedings Volumes (IFAC-PapersOnline) (2011), 18(PART 1), 587-592

Time-varying elastance of the ventricles is an important metric both clinically and as an input for a previously developed cardiovascular model. However, currently time-varying elastance is not normally ... [more ▼]

Time-varying elastance of the ventricles is an important metric both clinically and as an input for a previously developed cardiovascular model. However, currently time-varying elastance is not normally available in an Intensive Care Unit (ICU) setting, as it is an invasive and ethically challenging metric to measure. A previous paper developed a method to map less invasive metrics to the driver function, enabling an estimate to be achieved without invasive measurements. This method requires reliable and accurate processing of the aortic and pulmonary artery pressure waveforms to locate the specific points that are required to estimate the driver function. This paper details the method by which these waveforms are processed, using a data set of five pigs induced with pulmonary embolism, and five pigs induced with septic shock (with haemofiltration), adding up to 88 waveforms (for each of aortic and pulmonary artery pressure), and 616 points in total to locate. 98.2% of all points were located to within 1% of their true value, 0.81% were between 1% and 5%, 0.65% were between 5% and 10%, the remaining 0.32% were below 20%.© 2011 IFAC. [less ▲]

Detailed reference viewed: 20 (0 ULg)
Full Text
Peer Reviewed
See detailESC/EAS Guidelines for the management of dyslipidaemias The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS).
Catapano, Alberico L; Reiner, Zeljko; De Backer, Guy et al

in Atherosclerosis (2011), 217(1), 3-46

Detailed reference viewed: 28 (0 ULg)
Full Text
Peer Reviewed
See detailPerformance indicators in cardiac surgery--time for public release.
Kolh, Philippe ULg

in Interactive Cardiovascular and Thoracic Surgery (2011), 12(4), 589-90

Detailed reference viewed: 7 (0 ULg)
Peer Reviewed
See detailJoint ESC/EACTS guidelines on myocardial revascularization.
Kolh, Philippe ULg; Wijns, William

in Journal of Cardiovascular Medicine (Hagerstown, Md.) (2011), 12(4), 264-7

The Guidelines for Myocardial Revascularization of the European Society of Cardiology (ESC) and European Association for Cardio-Thoracic Surgery (EACTS) are the very first reported consensus document, by ... [more ▼]

The Guidelines for Myocardial Revascularization of the European Society of Cardiology (ESC) and European Association for Cardio-Thoracic Surgery (EACTS) are the very first reported consensus document, by a writing committee balanced between non-interventional and interventional cardiologists as well as cardiac surgeons, on this specific issue. Given the strong impact that ischaemic heart disease has on the survival and quality of life of the individual as well as the economic implications for society, the importance of the ESC/EACTS guidelines is obvious. [less ▲]

Detailed reference viewed: 26 (1 ULg)
Full Text
Peer Reviewed
See detailEditorial comment: The burden of renal failure after cardiac surgery.
Kolh, Philippe ULg

in European Journal of Cardio - Thoracic Surgery (2011), 40(3), 708-9

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailClinical detection and monitoring of acute pulmonary embolism: proof of concept of a computer-based method.
Revie, James A; Stevenson, David J; Chase, J Geoffrey et al

in Annals of Intensive Care (2011), 1(1), 33

ABSTRACT: BACKGROUND: The diagnostic ability of computer-based methods for cardiovascular system (CVS) monitoring offers significant clinical potential. This research tests the clinical applicability of a ... [more ▼]

ABSTRACT: BACKGROUND: The diagnostic ability of computer-based methods for cardiovascular system (CVS) monitoring offers significant clinical potential. This research tests the clinical applicability of a newly improved computer-based method for the proof of concept case of tracking changes in important hemodynamic indices due to the influence acute pulmonary embolism (APE). METHODS: Hemodynamic measurements from a porcine model of APE were used to validate the method. Of these measurements, only those that are clinically available or inferable were used in to identify pig-specific computer models of the CVS, including the aortic and pulmonary artery pressure, stroke volume, heart rate, global end diastolic volume, and mitral and tricuspid valve closure times. Changes in the computer-derived parameters were analyzed and compared with experimental metrics and clinical indices to assess the clinical applicability of the technique and its ability to track the disease state. RESULTS: The subject-specific computer models accurately captured the increase in pulmonary resistance (Rpul), the main cardiovascular consequence of APE, in all five pigs trials, which related well (R2 = 0.81) with the experimentally derived pulmonary vascular resistance. An increase in right ventricular contractility was identified, as expected, consistent with known reflex responses to APE. Furthermore, the modeled right ventricular expansion index (the ratio of right to left ventricular end diastolic volumes) closely followed the trends seen in the measured data (R2 = 0.92) used for validation, with sharp increases seen in the metric for the two pigs in a near-death state. These results show that the pig-specific models are capable of tracking disease-dependent changes in pulmonary resistance (afterload), right ventricular contractility (inotropy), and ventricular loading (preload) during induced APE. Continuous, accurate estimation of these fundamental metrics of cardiovascular status can help to assist clinicians with diagnosis, monitoring, and therapy-based decisions in an intensive care environment. Furthermore, because the method only uses measurements already available in the ICU, it can be implemented with no added risk to the patient and little extra cost. CONCLUSIONS: This computer-based monitoring method shows potential for real-time, continuous diagnosis and monitoring of acute CVS dysfunction in critically ill patients. [less ▲]

Detailed reference viewed: 19 (7 ULg)
Full Text
Peer Reviewed
See detailEndoscopy and Surgery: A Matter of Diagnostic Enlightenment & Therapeutic Liberty
Bertrand, Cl; Burnon, D.; Carly, B. et al

in Acta Chirurgica Belgica (2011), 111(4), 200-204

Detailed reference viewed: 16 (0 ULg)
Full Text
Peer Reviewed
See detailThe burden of postoperative delirium after vascular surgery.
Kolh, Philippe ULg

in European Journal of Vascular and Endovascular Surgery (2011), 42(6), 831-2

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailAnalysis of insurance claims after vascular surgery: a tool for quality improvement?
Kolh, Philippe ULg

in European Journal of Vascular and Endovascular Surgery (2011), 42(4), 506-7

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS).
Reiner, Zeljko; Catapano, Alberico L; De Backer, Guy et al

in European Heart Journal (2011), 32(14), 1769-818

Cardiovascular disease (CVD) due to atherosclerosis of the arterial vessel wall and to thrombosis is the foremost cause of premature mortality and of disability-adjusted life years (DALYs) in Europe, and ... [more ▼]

Cardiovascular disease (CVD) due to atherosclerosis of the arterial vessel wall and to thrombosis is the foremost cause of premature mortality and of disability-adjusted life years (DALYs) in Europe, and is also increasingly common in developing countries.1 In the European Union, the economic cost of CVD represents annually E192 billion1 in direct and indirect healthcare costs. The main clinical entities are coronary artery disease (CAD), ischaemic stroke, and peripheral arterial disease (PAD). The causes of these CVDs are multifactorial. Some of these factors relate to lifestyles, such as tobacco smoking, lack of physical activity, and dietary habits, and are thus modifiable. Other risk factors are also modifiable, such as elevated blood pressure, type 2 diabetes, and dyslipidaemias, or non-modifiable, such as age and male gender. These guidelines deal with the management of dyslipidaemias as an essential and integral part of CVD prevention. Prevention and treatment of dyslipidaemias should always be considered within the broader framework of CVD prevention, which is addressed in guidelines of the Joint European Societies' Task forces on CVD prevention in clinical practice.2 - 5 The latest version of these guidelines was published in 20075; an update will become available in 2012. These Joint ESC/European Atherosclerosis Society (EAS) guidelines on the management of dyslipidaemias are complementary to the guidelines on CVD prevention in clinical practice and address not only physicians [e.g. general practitioners (GPs) and cardiologists] interested in CVD prevention, but also specialists from lipid clinics or metabolic units who are dealing with dyslipidaemias that are more difficult to classify and treat. [less ▲]

Detailed reference viewed: 47 (0 ULg)
Full Text
Peer Reviewed
See detailStudy of six models of the instantaneous pressure-volume relationship
Lucas, Alexandra ULg; Dauby, Pierre ULg; Desaive, Thomas ULg et al

in Proceedings of the XXIIIth Congress of the ISB (2011)

Models and simulations are very useful to study interactions between anatomic structures and physical cardiac phenomena. In this work, we are interested in models of the instantaneous pressure-volume ... [more ▼]

Models and simulations are very useful to study interactions between anatomic structures and physical cardiac phenomena. In this work, we are interested in models of the instantaneous pressure-volume relationship, i.e. isochrone models. More precisely, we concentrate on the 6 models considered by Lankhaar et al. [1]. We propose a critical analysis of the work of these authors and suggest some improvement of their procedure. [1] Lankhaar J.-W. et al. Modeling the Instantaneous Pressure–Volume Relation of the Left Ventricle: A Comparison of Six Models. Annals of Biomedical Engineering, Volume 37, Number 9, 1710-1726, 2009. [less ▲]

Detailed reference viewed: 66 (8 ULg)
Full Text
Peer Reviewed
See detailSubject-specific cardiovascular system model-based identification and diagnosis of septic shock with a minimally invasive data set: animal experiments and proof of concept.
Chase, J Geoffrey; Lambermont, Bernard ULg; Starfinger, Christina et al

in Physiological Measurement (2011), 32(1), 65-82

A cardiovascular system (CVS) model and parameter identification method have previously been validated for identifying different cardiac and circulatory dysfunctions in simulation and using porcine models ... [more ▼]

A cardiovascular system (CVS) model and parameter identification method have previously been validated for identifying different cardiac and circulatory dysfunctions in simulation and using porcine models of pulmonary embolism, hypovolemia with PEEP titrations and induced endotoxic shock. However, these studies required both left and right heart catheters to collect the data required for subject-specific monitoring and diagnosis-a maximally invasive data set in a critical care setting although it does occur in practice. Hence, use of this model-based diagnostic would require significant additional invasive sensors for some subjects, which is unacceptable in some, if not all, cases. The main goal of this study is to prove the concept of using only measurements from one side of the heart (right) in a 'minimal' data set to identify an effective patient-specific model that can capture key clinical trends in endotoxic shock. This research extends existing methods to a reduced and minimal data set requiring only a single catheter and reducing the risk of infection and other complications-a very common, typical situation in critical care patients, particularly after cardiac surgery. The extended methods and assumptions that found it are developed and presented in a case study for the patient-specific parameter identification of pig-specific parameters in an animal model of induced endotoxic shock. This case study is used to define the impact of this minimal data set on the quality and accuracy of the model application for monitoring, detecting and diagnosing septic shock. Six anesthetized healthy pigs weighing 20-30 kg received a 0.5 mg kg(-1) endotoxin infusion over a period of 30 min from T0 to T30. For this research, only right heart measurements were obtained. Errors for the identified model are within 8% when the model is identified from data, re-simulated and then compared to the experimentally measured data, including measurements not used in the identification process for validation. Importantly, all identified parameter trends match physiologically and clinically and experimentally expected changes, indicating that no diagnostic power is lost. This work represents a further with human subjects validation for this model-based approach to cardiovascular diagnosis and therapy guidance in monitoring endotoxic disease states. The results and methods obtained can be readily extended from this case study to the other animal model results presented previously. Overall, these results provide further support for prospective, proof of concept clinical testing with humans. [less ▲]

Detailed reference viewed: 39 (9 ULg)
Full Text
Peer Reviewed
See detailModeling the instantaneous pressure-volume relationship in the left ventricle
Lucas, Alexandra ULg; Dauby, Pierre ULg; Desaive, Thomas ULg et al

in 9th Belgian Day on Biomedical Engineering, Friday November 26th 2010 in the Academy Palace, Hertogstraat 1, 1000 Brussels (2010, November 26)

Models and simulations are very useful to study interactions between anatomic structures and physical cardiac phenomena. In this work, we are interested in models of the instantaneous pressure-volume ... [more ▼]

Models and simulations are very useful to study interactions between anatomic structures and physical cardiac phenomena. In this work, we are interested in models of the instantaneous pressure-volume relationship, i.e. isochrone models. More precisely, we concentrate on the 6 models considered by Lankhaar et al. [1]. We propose a critical analysis of the work of these authors and suggest some improvement of their procedure. [1] Lankhaar J.-W. et al. Modeling the Instantaneous Pressure–Volume Relation of the Left Ventricle: A Comparison of Six Models. Annals of Biomedical Engineering, Volume 37, Number 9, 1710-1726, 2009. [less ▲]

Detailed reference viewed: 30 (9 ULg)
Full Text
Peer Reviewed
See detailminimal cardiovascular system model including physiological mitral valve opening
Paeme, Sabine ULg; Moorhead, Katherine ULg; chase, J. Geoffrey et al

in 9th Belgian National Day on Biomedical Engineering, Bruxelles, 26th november (2010, November 26)

A minimal cardiovascular system (CVS) model has been previously validated in silico, and in several animal model studies. It accounts for valve dynamics by means of a Heaviside function to simulate the ... [more ▼]

A minimal cardiovascular system (CVS) model has been previously validated in silico, and in several animal model studies. It accounts for valve dynamics by means of a Heaviside function to simulate the “open on pressure, close on flow” law. However, this model does not describe the progressive valve opening and therefore, it is not suitable for studying valve dysfunctions. [less ▲]

Detailed reference viewed: 18 (6 ULg)
Full Text
See detailMinimal cardiovascular system model including physiological mitral valve opening
Paeme, Sabine ULg; Moorhead, Katherine ULg; Chase, J. Geoffrey et al

Poster (2010, November 26)

This research describes a new closed-loop cardiovascular system (CVS) model including a model of the left atrium and a model describing the progressive aperture of the mitral valve

Detailed reference viewed: 25 (9 ULg)
Full Text
See detailModeling the instantaneous pressure-volume relationship in the left ventricle
Lucas, Alexandra ULg; Dauby, Pierre ULg; Kolh, Philippe ULg et al

Poster (2010, November 26)

Pressure-volume loops are a common modeling tool of the cardiovascular system. They are very useful because they characterize the global function of the cardiac pump and can also be analyzed ... [more ▼]

Pressure-volume loops are a common modeling tool of the cardiovascular system. They are very useful because they characterize the global function of the cardiac pump and can also be analyzed by considering the various phases of the cardiac cycle and marking each point of a cycle with the corresponding time. When several loops are considered, the points corresponding to the same time t in each loop can be joined to define a curve named isochrone. In this work, we are interested in models of the instantaneous pressure-volume relationship, i.e. isochrone models. More precisely, we concentrate on the 6 models considered by Lankhaar et al. [1] and we propose a critical analysis of the work of these authors and suggest some improvement of their procedure. [1] Lankhaar J.W. et al. Annals of Biomedical Engineering, Volume 37, Number 9, 1710-1726, 2009. [less ▲]

Detailed reference viewed: 44 (14 ULg)
Full Text
Peer Reviewed
See detailA Simplified Rotational Spring Model for Mitral Valve Dynamics
Moorhead, K. T.; Hann, C. E.; Chase, J. Geoffrey et al

in Proceedings of control 2010 (2010, September 07)

A simple non-linear rotational spring model has been implemented to model the motion of mitral valve, located between the left atrium and ventricle. A measured pressure difference curve was used as the ... [more ▼]

A simple non-linear rotational spring model has been implemented to model the motion of mitral valve, located between the left atrium and ventricle. A measured pressure difference curve was used as the input into the model, which represents an applied torque to the valve chords. Various damping and hysteresis states were investigated to find a model that best matches reported animal data of chord movement during a heartbeat. The study is limited by the use of one dataset from the literature, however results clearly highlight some physiological issues such as the damping and chord stiffness changing within one cardiac cycle. Very good correlation was achieved between modeled and experimental valve angle, indicating good promise for future simulation of cardiac dysfunction, such as mitral regurgitation or stenosis. [less ▲]

Detailed reference viewed: 28 (6 ULg)