References of "Kerschen, Gaëtan"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailExperimental identification of the complex dynamics of a strongly nonlinear spacecraft structure
Noël, Jean-Philippe ULg; Renson, Ludovic ULg; Kerschen, Gaëtan ULg

in Proceedings of the ASME IDETC/CIE 2013 (2013, August)

The present paper addresses the identification of a real-life spacecraft structure possessing an impact-type nonlinear component. The complete identification procedure, i.e. from nonlinearity detection to ... [more ▼]

The present paper addresses the identification of a real-life spacecraft structure possessing an impact-type nonlinear component. The complete identification procedure, i.e. from nonlinearity detection to parameter estimation, is carried out using experimental data collected during a typical spacecraft qualification test campaign. The complementary use of several techniques reveals particularly interesting and complex phenomena such as nonlinear jumps, nonlinear modal interactions, internal force relaxation and chattering during impacts. [less ▲]

Detailed reference viewed: 44 (12 ULg)
Full Text
Peer Reviewed
See detailIdentification of mechanical systems with local nonlinearities through discrete-time Volterra series and Kautz functions
Shiki, Sidney Bruce; Noël, Jean-Philippe ULg; Kerschen, Gaëtan ULg et al

in Proceedings of the 11th International Conference on Recent Advances in Structural Dynamics (2013, July)

Mathematical modeling of mechanical structures is an important research area in structural dynamics. One of the goals of this area is to obtain a model that accurately predicts the dynamics of the system ... [more ▼]

Mathematical modeling of mechanical structures is an important research area in structural dynamics. One of the goals of this area is to obtain a model that accurately predicts the dynamics of the system. However, the nonlinear eff ects caused by large displacements and boundary conditions like gap, backlash or joint are not as well understood as the linear counterpart. This paper identifies a non-parametric discrete-time Volterra model of a benchmark nonlinear structure consisting of a cantilever beam connected to a thin beam at its free end. Time-domain data experimentally measured are used to identify the Volterra kernels, which are expanded with orthogonal Kautz functions to facilitate the identification process. The nonlinear parameters are then estimated through a model updating process involving optimization of the residue between the numerical and experimental kernels. The advantages and drawbacks of the Volterra series for modeling the behavior of nonlinear structures are finally indicated with suggestions to overcome the disadvantages found during the tests. [less ▲]

Detailed reference viewed: 74 (4 ULg)
Full Text
See detailA new computational method for nonlinear normal modes of nonconservative systems
Renson, Ludovic ULg; Kerschen, Gaëtan ULg

in Proceedings of the Euromech Colloquium n. 541 - New Advances in the Nonlinear Dynamics and Control of Composites for Smart Engineering Design (2013, June)

The concept of nonlinear normal modes (NNMs) was introduced with the aim of providing a rigorous generalization of normal modes to nonlinear systems. Initially, NNMs were defined as periodic solutions of ... [more ▼]

The concept of nonlinear normal modes (NNMs) was introduced with the aim of providing a rigorous generalization of normal modes to nonlinear systems. Initially, NNMs were defined as periodic solutions of the underlying conservative system, and continuation algorithms were recently exploited to compute them. To extend the concept of NNMs to nonconservative systems, Shaw and Pierre defined an NNM as a two-dimensional invariant manifold in the system’s phase space. This contribution presents a novel algorithm for solving the set of partial differential equations governing the manifold geometry numerically. The resolution strategy takes advantage of the hyperbolic nature of the equations to progressively solve them in annular regions. Each region is defined by two different iso-energy curves and equations are discretized using a specific finite element technique. The proposed strategy also offers the opportunity to estimate the frequency-energy dependence of the mode without using time integration. The algorithm is applied to both conservative and nonconservative systems. [less ▲]

Detailed reference viewed: 29 (5 ULg)
Full Text
See detailNonlinear dynamic analysis of an F-16 aircraft using GVT data
Noël, Jean-Philippe ULg; Renson, Ludovic ULg; Kerschen, Gaëtan ULg et al

in Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (2013, June)

This paper aims at investigating the nonlinear dynamics of an F-16 aircraft, based upon sine-sweep data collected during a ground vibration test (GVT) campaign. Various analysis techniques, including the ... [more ▼]

This paper aims at investigating the nonlinear dynamics of an F-16 aircraft, based upon sine-sweep data collected during a ground vibration test (GVT) campaign. Various analysis techniques, including the mere visual inspection of the time series, the wavelet transform and the restoring force surface method, are utilised and reveal that the F-16 wing-to-payload mounting interfaces exhibit both softening and hardening nonlinearities. [less ▲]

Detailed reference viewed: 50 (15 ULg)
Full Text
See detailComparison between analytical and optimal control techniques in the differential drag based rendez-vous
Dell'Elce, Lamberto ULg; Kerschen, Gaëtan ULg

in Proceedings of the 5th International Conference on Spacecraft Formation Flying Missions & Technologies (2013, May 29)

The focus of this study is on differential drag for propellantless satellite rendez-vous. This technique is particularly attractive for low-Earth-orbit small satellites for which stringent weight ... [more ▼]

The focus of this study is on differential drag for propellantless satellite rendez-vous. This technique is particularly attractive for low-Earth-orbit small satellites for which stringent weight constraints apply. Most existing contributions are based on bang-bang strategies, which may be difficult to implement in practice. This is why the present paper proposes a novel strategy integrating pseudospectral optimal control for maneuver planning and model predictive control for dealing with uncertainties and unmodeled dynamics. One important advantage of this methodology is that it can naturally account for attitude dynamics and constraints, which, in turn, paves the way for the practical realization of differential drag-based rendez-vous. A realistic scenario involving two nanosatellites of the QB50 constellation is considered to illustrate and validate the proposed developments. In addition, a comparison of this numerical technique with an existing analytic solution is carried out, and their respective pros and cons are discussed. [less ▲]

Detailed reference viewed: 18 (8 ULg)
See detailComputation of nonlinear normal modes through continuation methods
Renson, Ludovic ULg; Kerschen, Gaëtan ULg

Conference (2013, May)

In mechanical engineering, performance enhancement usually results in lighter and more flexible structures and pushes the limits of the system operating envelope. Nonlinearity is therefore becoming a ... [more ▼]

In mechanical engineering, performance enhancement usually results in lighter and more flexible structures and pushes the limits of the system operating envelope. Nonlinearity is therefore becoming a frequent occurrence and linear design tools show their limitations. To overcome these issues, nonlinear normal modes (NNMs) were introduced in structural dynamics as a direct extension of linear normal modes to nonlinear systems. Our contribution reviews the history and the new trends for the computation of NNMs in mechanical engineering. Specifically, algorithms for the continuation of periodic solutions were first developed. Such algorithms are now well-established and applicable to large-scale systems such as real-life aerospace structures. To further extend the concept of NNMs to nonconservative systems, the definition of an NNM as an invariant manifold in the system’s phase space was introduced. Again, continuation techniques are particularly well suited for computing these invariant manifolds. The geodesic level set method developed by Krauskopf and Osinga [1] as well as the “PDE formulation” method of Guckenheimer and Vladimirsky [2] are both considered. [1] Krauskopf, B. and H. Osinga (2003). "Computing Geodesic Level Sets on Global (Un)stable Manifolds of Vector Fields." SIAM Journal on Applied Dynamical Systems 2(4): 546-569. [2] Guckenheimer, J. and A. Vladimirsky (2004). "A Fast Method for Approximating Invariant Manifolds." SIAM Journal on Applied Dynamical Systems 3(3): 232-260. [less ▲]

Detailed reference viewed: 11 (3 ULg)
Full Text
See detailFrequency-domain subspace identification of nonlinear mechanical systems
Noël, Jean-Philippe ULg; Kerschen, Gaëtan ULg

in Proceedings of the 5th International Operational Modal Analysis Conference (2013, May)

The objective of the present paper is to address the identification of a real-life strongly nonlinear space structure, the EADS-Astrium SmallSat spacecraft. To this end, a new nonlinear subspace ... [more ▼]

The objective of the present paper is to address the identification of a real-life strongly nonlinear space structure, the EADS-Astrium SmallSat spacecraft. To this end, a new nonlinear subspace identification method formulated in the frequency domain is exploited, referred to as the FNSI method. The frequency response functions of the underlying linear spacecraft and the amplitudes of the nonlinear internal forces are estimated based on a periodic-random data set corrupted by noise. This application is challenging for several reasons, including high modal density, highly non-proportional damping and the non-smooth nature of the nonlinearities. [less ▲]

Detailed reference viewed: 58 (7 ULg)
Full Text
See detailNonparametric subspace identification of nonlinear structures - Application to a spacecraft
Noël, Jean-Philippe ULg; Kerschen, Gaëtan ULg

in Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2013, April)

The objective of the present paper is to address the identification of a strongly nonlinear satellite structure by exploiting a new nonlinear subspace identification method formulated in the frequency ... [more ▼]

The objective of the present paper is to address the identification of a strongly nonlinear satellite structure by exploiting a new nonlinear subspace identification method formulated in the frequency domain, referred to as the FNSI method. The modal parameters of the underlying linear structure and the coefficients of the nonlinear internal forces will be estimated by this approach. Moreover, because a priori knowledge about nonlinear behaviour may be limited, the paper also proposes a nonparametric spline-based modelling strategy, encapsulated in the FNSI method. The application of interest is the SmallSat spacecraft developed by EADS-Astrium, which possesses an impact-type nonlinear device consisting of eight mechanical stops limiting the motion of an inertia wheel mounted on an elastomeric interface. [less ▲]

Detailed reference viewed: 31 (9 ULg)
Full Text
See detailFrequency-domain subspace identification of nonlinear mechanical systems - Application to a solar array structure
Noël, Jean-Philippe ULg; Kerschen, Gaëtan ULg; Foltête, Emmanuel et al

in Proceedings of the International Modal Analysis Conference (IMAC) XXXI (2013, February)

The present paper addresses the experimental identification of a simplified realisation of a solar array structure in folded configuration. To this end, a nonlinear subspace identification technique ... [more ▼]

The present paper addresses the experimental identification of a simplified realisation of a solar array structure in folded configuration. To this end, a nonlinear subspace identification technique formulated in the frequency domain, referred to as the FNSI method, is exploited. The frequency response functions of the underlying linear structure and the nonlinear coefficients are estimated by this approach. Nonlinearity is caused by impacts between adjacent panels and friction and gaps appearing in their clamping interfaces. This application is challenging for several reasons, which include high modal density and the complicated nature of the involved nonlinear mechanisms. [less ▲]

Detailed reference viewed: 59 (8 ULg)
Full Text
Peer Reviewed
See detailNonlinear modal analysis of a full-scale aircraft
Kerschen, Gaëtan ULg; Peeters; Golinval, Jean-Claude ULg et al

in Journal of Aircraft (2013), 50

Nonlinear normal modes (NNMs), which are defined as a nonlinearextension of the concept of linear normal modes, are a rigorous tool for nonlinear modal analysis. The objective of this paper is to ... [more ▼]

Nonlinear normal modes (NNMs), which are defined as a nonlinearextension of the concept of linear normal modes, are a rigorous tool for nonlinear modal analysis. The objective of this paper is to demonstrate that the computation of NNMs and of their oscillation frequencies can now be achieved for complex, real-world aerospace structures. The application considered in this study is the airframe of the Morane-Saulnier Paris aircraft. Ground vibration tests of this aircraft exhibited softening nonlinearities in the connection between the external fuel tanks and the wing tips. The NNMs of this aircraft are computed from a reduced-order nonlinear finite element model using a numerical algorithm combining shooting and pseudo-arclength continuation. Several NNMs, involving, e.g., wing bending, wing torsion and tail bending, are presented, which highlights that the aircraft can exhibit very interesting nonlinear phenomena. Specifically, it is shown that modes with distinct linear frequencies can interact and generate additional nonlinear modes with no linear counterpart. [less ▲]

Detailed reference viewed: 26 (2 ULg)
Full Text
Peer Reviewed
See detailVibrational dynamics of vocal folds using nonlinear normal modes
Pinheiro, A.P.; Kerschen, Gaëtan ULg

in Medical Engineering & Physics (2013), 35

Many previous works involving physical models, excised and in vivo larynges have pointed out nonlinear vibration in vocal folds during voice production. Moreover, theoretical studies involving mechanical ... [more ▼]

Many previous works involving physical models, excised and in vivo larynges have pointed out nonlinear vibration in vocal folds during voice production. Moreover, theoretical studies involving mechanical modeling of these folds have tried to gain a profound understanding of the observed nonlinear phenomena. In this context, the present work uses the nonlinear normal mode theory to investigate the nonlinear modal behavior of 16 subjects using a two-mass mechanical modeling of the vocal folds. The free response of the conservative system at different energy levels is considered to assess the impact of the structural nonlinearity of the vocal fold tissues. [less ▲]

Detailed reference viewed: 27 (7 ULg)
Full Text
See detailScientific and Technological Payloads Aboard the B3LSat CubeSat of the QB50 Network
Dell'Elce, Lamberto ULg; Kerschen, Gaëtan ULg; Delabie, Tjorven et al

in Proceedings of the 2nd IAA Conference on University Satellite Missions and Cubesat Workshop (2013)

Detailed reference viewed: 72 (8 ULg)
Full Text
See detailNonlinear Normal Modes of Nonconservative Systems
Renson, Ludovic ULg; Kerschen, Gaëtan ULg

in Proceedings of the SEM IMAC XXXI Conference (2013)

Linear modal analysis is a mature tool enjoying various applications ranging from bridges to satellites. Nevertheless, modal analysis fails in the presence of nonlinear dynamical phenomena and the ... [more ▼]

Linear modal analysis is a mature tool enjoying various applications ranging from bridges to satellites. Nevertheless, modal analysis fails in the presence of nonlinear dynamical phenomena and the development of a practical nonlinear analog of modal analysis is a current research topic. Recently, numerical techniques (e.g., harmonic balance, continuation of periodic solutions) were developed for the computation of nonlinear normal modes (NNMs). Because these methods are limited to conservative systems, the present study targets the computation of NNMs for nonconservative systems. Their definition as invariant manifolds in phase space is considered. Specifically, a new finite element technique is proposed to solve the set of partial differential equations governing the manifold geometry. [less ▲]

Detailed reference viewed: 30 (5 ULg)
See detailNonlinear Dynamic Analysis of Aerospace Structures
Kerschen, Gaëtan ULg; Noël, Jean-Philippe ULg; Renson, Ludovic ULg et al

Conference (2012, October)

Current practice in industry is to rely on linear finite element simulations. However, nonlinearity is a frequent occurrence in engineering structures. It is at the origin of rich and complex dynamical ... [more ▼]

Current practice in industry is to rely on linear finite element simulations. However, nonlinearity is a frequent occurrence in engineering structures. It is at the origin of rich and complex dynamical phenomena that cannot be observed in linear structures. Solving both the direct and inverse problems in nonlinear structural dynamics therefore warrants the development of appropriate methodologies. The focus of the presentation will first be on the inverse problem. We will describe the different steps of the nonlinear system identification process and discuss the current capabilities of existing methods. The presentation will then address the direct problem during which the identified model is used for accurately predicting the structure’s dynamic characteristics. A rigorous nonlinear extension of modal analysis will be presented, and we will show that it represents a very useful framework for understanding nonlinear dynamical phenomena and supporting design decisions. Two real-life aerospace structures will be considered for illustrating the proposed developments. [less ▲]

Detailed reference viewed: 62 (11 ULg)
Full Text
Peer Reviewed
See detailThe OUFTI-1 nanosatellite system in mid-2012: architectures of ground and space segments
Denis, Amandine ULg; Pisane, Jonathan ULg; Crosset, Nicolas ULg et al

Conference (2012, September)

We describe the current status of the OUFTI-1 nanosatellite project, the main payload of which is an innovative D- STAR radiocommunication system. We describe the architectures of the ground and space ... [more ▼]

We describe the current status of the OUFTI-1 nanosatellite project, the main payload of which is an innovative D- STAR radiocommunication system. We describe the architectures of the ground and space segments. [less ▲]

Detailed reference viewed: 35 (12 ULg)
Full Text
See detailTime- and frequency-domain subspace identification of a nonlinear spacecraft
Noël, Jean-Philippe ULg; Marchesiello, Stefano; Kerschen, Gaëtan ULg

in Proceedings of the ISMA International Conference on Noise and Vibration Engineering 2012 (2012, September)

The present paper discusses the identification of the SmallSat spacecraft, a real-life nonlinear space structure developed by EADS-Astrium. To this end, two nonlinear subspace identification techniques ... [more ▼]

The present paper discusses the identification of the SmallSat spacecraft, a real-life nonlinear space structure developed by EADS-Astrium. To this end, two nonlinear subspace identification techniques formulated in the time and frequency domains are exploited, referred to as the TNSI and FNSI methods, respectively. The frequency response functions (FRFs) of the underlying linear spacecraft and the nonlinear coefficients are estimated by these approaches. The nonlinear component comprises an inertia wheel mounted on a support, the motion of which is constrained by eight elastomer plots and mechanical stops. This application is challenging for several reasons, which include high modal density, the discontinuous nature of the nonlinearities and order selection of the identified reduced model. [less ▲]

Detailed reference viewed: 70 (8 ULg)
Full Text
See detailFinite element computation of nonlinear normal modes of nonconservative systems
Renson, Ludovic ULg; Deliège, Geoffrey ULg; Kerschen, Gaëtan ULg

in Proceedings of the ISMA 2012 conference (2012, September)

Modal analysis, i.e., the computation of vibration modes of linear systems, is really quite sophisticated and advanced. Even though modal analysis served, and is still serving, the structural dynamics ... [more ▼]

Modal analysis, i.e., the computation of vibration modes of linear systems, is really quite sophisticated and advanced. Even though modal analysis served, and is still serving, the structural dynamics community for applications ranging from bridges to satellites, it is commonly accepted that nonlinearity is a frequent occurrence in engineering structures. Because modal analysis fails in the presence of nonlinear dynamical phenomena, the development of a practical nonlinear analog of modal analysis is the objective of this research. Progress in this direction has been made recently with the development of numerical techniques (harmonic balance, continuation of periodic solutions) for the computation of nonlinear normal modes (NNMs). Because these methods consider the conservative system, this study targets the computation of NNMs for nonconservative systems, i.e. defined as invariant manifolds in phase space. Specifically, a new finite element technique is proposed to solve the set of partial differential equations governing the manifold geometry. The algorithm is demonstrated using different two-degree-of-freedom systems. [less ▲]

Detailed reference viewed: 58 (11 ULg)
Full Text
See detailTransport Methods for the Numerical Computation of Nonlinear Normal Modes
Renson, Ludovic ULg; Blanc, François; Touzé, Cyril et al

Conference (2012, July)

Detailed reference viewed: 17 (5 ULg)
Full Text
See detailLow-order local modelling of structural nonlinearities
Noël, Jean-Philippe ULg; Kerschen, Gaëtan ULg

in Proceedings of the XVIIIth Symposium on Vibrations, shocks and noise (VCB 2012) (2012, July)

The present paper addresses the problem of characterising structural nonlinearities in view of system identification. A low-order local modelling strategy is proposed and encapsulated in a recently ... [more ▼]

The present paper addresses the problem of characterising structural nonlinearities in view of system identification. A low-order local modelling strategy is proposed and encapsulated in a recently-introduced frequency-domain nonlinear subspace method for the estimation of model parameters. The complete methodology is first demonstrated using two academic examples, namely a Duffing oscillator and a five-degree-of-freedom system comprising two nonlinearities. The identification of an experimental beam involving nonlinear geometrical behaviour is finally addressed. [less ▲]

Detailed reference viewed: 45 (7 ULg)
Full Text
Peer Reviewed
See detailA new subspace-based approach to identify nonlinear mechanical structures in the frequency domain
Noël, Jean-Philippe ULg; Kerschen, Gaëtan ULg

in Proceedings of the 16th IFAC Symposium on System Identification (2012, July)

This paper introduces a new frequency-domain subspace-based method for the identification of nonlinear mechanical systems. The technique exploits frequency data and interprets nonlinearities as feedback ... [more ▼]

This paper introduces a new frequency-domain subspace-based method for the identification of nonlinear mechanical systems. The technique exploits frequency data and interprets nonlinearities as feedback forces exciting the underlying linear system. It is demonstrated using two academic examples, a Duffing oscillator and a five degree-of-freedom system comprising two nonlinearities. [less ▲]

Detailed reference viewed: 36 (3 ULg)