References of "Jehin, Emmanuel"
     in
Bookmark and Share    
Full Text
See detailThe TRAPPIST comet survey
Jehin, Emmanuel ULg; Opitom, Cyrielle ULg; Manfroid, Jean ULg et al

in Muinonen, Karri (Ed.) Asteroids, Comets, Meteors - Book of Abstracts (2014, July 01)

TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) is a 60-cm robotic telescope that has been installed in June 2010 at the ESO La Silla Observatory [1]. Operated from Liège (Belgium) it is ... [more ▼]

TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) is a 60-cm robotic telescope that has been installed in June 2010 at the ESO La Silla Observatory [1]. Operated from Liège (Belgium) it is devoted to the detection and characterisation of exoplanets and to the study of comets and other small bodies in the Solar System. We describe here the hardware and the goals of the project and give an overview of the comet production rates monitoring after three years of operations. The telescope and observatory --- TRAPPIST's optical tube unit is a Ritchey-Chretien 0.6 meter telescope with a focal length of 4.8 meter. It is associated with a German equatorial mount that is, thanks to its direct drive system, extremely fast (up to 50 deg/s), accurate (tracking accuracy without autoguider better than 2'' in 10 min), and free of periodic error. The instrument is a Peltier cooled commercial camera equipped with a Fairchild 3041 back-illuminated 2k×2k chip. The pixel scale is 0.64''/pixel. Three read-out modes are available, the shortest read-out time being 2s. The total field of view of the camera is 22'×22'. It is associated to a custom-made dual filter wheel. One of the filter wheel contains broad band filters (Johnson B, V, R, Cousins Ic, Sloan z, and a special I+z filter), while the other contains the narrow-band NASA HB cometary filters (OH, NH, CN, CO+, C3, and C2 gaseous species; UC, BC, GC and RC solar continuum windows and a NaI D filter) [2]. The telescope is protected by a 5 meter diameter dome that was totally refurbished and automatized. The observatory is fully robotic and equipped with a weather station, an UPS and webcams. The la Silla site is excellent with more than 300 clear nights per year and the telescope has proven to be very reliable with a small amount of technical downtime. Comet monitoring --- For relatively bright comets (V < 12) we measure several times a week the gaseous production rates (using a Haser model) and the spatial distribution of several species among which OH, NH, CN, C2 and C3 as well as ions like CO+. The dust production rates (Afrho) and color of the dust are determined through four dust continuum bands (UC, BC, GC, RC). Such regular measurements are rare because of the lack of observing time on larger telescopes. Yet they are very valuable as they show how the gas production rate of each species evolves with respect to the distance to the Sun. Those observations allow to determine the composition of the comets and the chemical class to which they belong (rich or poor in carbon for instance [3]), possibly revealing the origin of those classes but also if there are some changes of the abundance ratios along the orbit (evolutionary effects). Indeed with half a dozen of comets observed each year --- and as long as possible along their orbit --- this program will provide a good statistical sample after a few years. We will present the results of this monitoring after three years of operations. Thanks to the way the telescope is operated, follow-up of split comets and of special outburst events is possible right after an alert is given and can bring important information on the nature of comets. In addition to providing the productions rates of the different species through a proper photometric calibration, image analysis can reveal coma features (jets, fans, tails), that can lead to the detection of active regions and measure the rotation period of the nucleus. The monitoring is also useful to assess the gas and dust activity of a given comet in order to prepare more detailed observations with larger telescopes. Such data can be obtained at any time under request. Finally a dozen of faint comets (V < 20) are monitored once a week through B, V, Rc, Ic filters and magnitudes and positions are sent to the MPC. [less ▲]

Detailed reference viewed: 5 (0 ULg)
Full Text
See detailWater, hydrogen cyanide, and dust production from the distant comet 29P/Scwassmann-Wachmann 1
Bockelee-Morvan, D.; Biver, N.; Opitom, Cyrielle ULg et al

in Muinonen, Karri (Ed.) Asteroids, Comets, Meteors - Book of Abstracts (2014, July 01)

Comet 29P/Schwassmann-Wachmann is a periodic comet, also classified as a Centaur, orbiting on a nearly circular orbit at 6 au from the Sun. It is well known for its permanent activity driven by CO ... [more ▼]

Comet 29P/Schwassmann-Wachmann is a periodic comet, also classified as a Centaur, orbiting on a nearly circular orbit at 6 au from the Sun. It is well known for its permanent activity driven by CO outgassing, and its episodic outbursts. Comet 29P was observed in 2010--2011 with the Herschel space observatory. Observations of water and ammonia were performed with the Heterodyne Instrument for the Far-Infrared (HIFI). One set of measurements was obtained two days after a major outburst (16 Apr. 2010). Images of the dust coma at 70 and 160 μ m were obtained using the Photodetector Array Camera and Spectrometer (PACS). To support these observations, observations of CO and HCN were undertaken at the 30-m telescope of the Institut de radioastronomie millimétrique (IRAM). We present an overview of this set of observations. H_2O and CO are detected. We also obtain the first detection of HCN in this distant comet. Relative abundances are similar to those measured in the coma of comet C/1995 O1 (Hale-Bopp) when at r_h = 6 au from the Sun, but strongly differ from coma compositions at r_h = 1 au. The line profiles show evidence that both H_2O, HCN are released from long-lived icy grains. Detailed modeling of water production from icy-grain suggests continuous release of icy grains from the nucleus. The thermal emission from the nucleus is detected in the PACS 70 μ m images. The thermal emission from dust grains is analyzed with a thermal model of dust emission, which takes into account the dust size distribution. Both the size index and the dust production rate are measured. [less ▲]

Detailed reference viewed: 4 (0 ULg)
See detailGround-based transmission spectrum of WASP-80 b, a gas giant transiting an M-dwarf
Delrez, Laetitia ULg; Gillon, Michaël ULg; Lendl, Monika ULg et al

Poster (2014, June 09)

We present here some results from our ground-­based multi-­object spectroscopy program aiming to measure the transmission spectrum of the transiting hot Jupiter WASP-80b using the VLT/FORS2 instrument ... [more ▼]

We present here some results from our ground-­based multi-­object spectroscopy program aiming to measure the transmission spectrum of the transiting hot Jupiter WASP-80b using the VLT/FORS2 instrument. WASP-­80b is a unique object as it is the only known specimen of gas giant orbiting an M-dwarf that is bright enough for high SNR follow-­up measurements. Due to the nature of its host star, this hot Jupiter is actually more `warm' than `hot', with an estimated equilibrium temperature of only 800K. It is thus a prime target to improve our understanding of giant exoplanet atmospheres in this temperature range. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailExtremely Organic-rich Coma of Comet C/2010 G2 (Hill) during its Outburst in 2012
Kawakita, Hideyo; Dello Russo, Neil; Vervack, Ron et al

in Astrophysical Journal (2014), 788

We performed high-dispersion near-infrared spectroscopic observations of comet C/2010 G2 (Hill) at 2.5 AU from the Sun using NIRSPEC (R ≈ 25,000) at the Keck II Telescope on UT 2012 January 9 and 10 ... [more ▼]

We performed high-dispersion near-infrared spectroscopic observations of comet C/2010 G2 (Hill) at 2.5 AU from the Sun using NIRSPEC (R ≈ 25,000) at the Keck II Telescope on UT 2012 January 9 and 10, about a week after an outburst had occurred. Over the two nights of our observations, prominent emission lines of CH[SUB]4[/SUB] and C[SUB]2[/SUB]H[SUB]6[/SUB], along with weaker emission lines of H[SUB]2[/SUB]O, HCN, CH[SUB]3[/SUB]OH, and CO were detected. The gas production rate of CO was comparable to that of H[SUB]2[/SUB]O during the outburst. The mixing ratios of CO, HCN, CH[SUB]4[/SUB], C[SUB]2[/SUB]H[SUB]6[/SUB], and CH[SUB]3[/SUB]OH with respect to H[SUB]2[/SUB]O were higher than those for normal comets by a factor of five or more. The enrichment of CO and CH[SUB]4[/SUB] in comet Hill suggests that the sublimation of these hypervolatiles sustained the outburst of the comet. Some fraction of water in the inner coma might exist as icy grains that were likely ejected from nucleus by the sublimation of hypervolatiles. Mixing ratios of volatiles in comet Hill are indicative of the interstellar heritage without significant alteration in the solar nebula. [less ▲]

Detailed reference viewed: 17 (0 ULg)
Full Text
See detailThe binary near-Earth asteroid (175706) 1996 FG3 - An observational constraint on its orbital stability
Scheirich, P.; Pravec, P.; Jacobson, S. A. et al

E-print/Working paper (2014)

Using our photometric observations taken between April 1996 and January 2013 and other published data, we derive properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements ... [more ▼]

Using our photometric observations taken between April 1996 and January 2013 and other published data, we derive properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements constraining evolution of the mutual orbit with potential consequences for the entire binary asteroid population. We also refined previously determined values of parameters of both components, making 1996 FG3 one of the most well understood binary asteroid systems. We determined the orbital vector with a substantially greater accuracy than before and we also placed constraints on a stability of the orbit. Specifically, the ecliptic longitude and latitude of the orbital pole are 266{\deg} and -83{\deg}, respectively, with the mean radius of the uncertainty area of 4{\deg}, and the orbital period is 16.1508 +\- 0.0002 h (all uncertainties correspond to 3sigma). We looked for a quadratic drift of the mean anomaly of the satellite and obtained a value of 0.04 +\- 0.20 deg/yr^2, i.e., consistent with zero. The drift is substantially lower than predicted by the pure binary YORP (BYORP) theory of McMahon and Scheeres (McMahon, J., Scheeres, D. [2010]. Icarus 209, 494-509) and it is consistent with the theory of an equilibrium between BYORP and tidal torques for synchronous binary asteroids as proposed by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D. [2011]. ApJ Letters, 736, L19). Based on the assumption of equilibrium, we derived a ratio of the quality factor and tidal Love number of Q/k = 2.4 x 10^5 uncertain by a factor of five. We also derived a product of the rigidity and quality factor of mu Q = 1.3 x 10^7 Pa using the theory that assumes an elastic response of the asteroid material to the tidal forces. This very low value indicates that the primary of 1996 FG3 is a 'rubble pile', and it also calls for a re-thinking of the tidal energy dissipation in close asteroid binary systems. [less ▲]

Detailed reference viewed: 15 (2 ULg)
Full Text
Peer Reviewed
See detailA window on exoplanet dynamical histories: Rossiter-McLaughlin observations of WASP-13b and WASP-32b
Brothwell, R.D.; Watson, C.A.; Hébrard, G. et al

in Monthly Notices of the Royal Astronomical Society (2014), 440(4), 3392-3401

We present Rossiter-McLaughlin observations of WASP-13b and WASP-32b and determine the sky-projected angle between the normal of the planetary orbit and the stellar rotation axis (lambda). WASP-13b and ... [more ▼]

We present Rossiter-McLaughlin observations of WASP-13b and WASP-32b and determine the sky-projected angle between the normal of the planetary orbit and the stellar rotation axis (lambda). WASP-13b and WASP-32b both have prograde orbits and are consistent with alignment with measured sky-projected angles of lambda =8°^{+13}_{-12} and lambda =-2°^{+17}_{-19}, respectively. Both WASP-13 and WASP-32 have Teff < 6250 K, and therefore, these systems support the general trend that aligned planetary systems are preferentially found orbiting cool host stars. A Lomb-Scargle periodogram analysis was carried out on archival SuperWASP data for both systems. A statistically significant stellar rotation period detection (above 99.9 per cent confidence) was identified for the WASP-32 system with Prot = 11.6 ± 1.0 days. This rotation period is in agreement with the predicted stellar rotation period calculated from the stellar radius, R*, and vsin i if a stellar inclination of i* = 90° is assumed. With the determined rotation period, the true 3D angle between the stellar rotation axis and the planetary orbit, psi, was found to be psi = 11° ± 14°. We conclude with a discussion on the alignment of systems around cool host stars with Teff < 6150 K by calculating the tidal dissipation time-scale. We find that systems with short tidal dissipation time-scales are preferentially aligned and systems with long tidal dissipation time-scales have a broad range of obliquities. [less ▲]

Detailed reference viewed: 15 (1 ULg)
Full Text
See detailMeasurements of the 14N/15N isotopic ratio in comets's ammonia
Rousselot, P.; Pirali, O.; Jehin, Emmanuel ULg et al

Conference (2014, May)

La détermination des rapports isotopiques de l'azote dans les différents objets du système solaire est importante pour une bonne compréhension de leur origine. Les mesures du rapport 14N/15N faites jusqu ... [more ▼]

La détermination des rapports isotopiques de l'azote dans les différents objets du système solaire est importante pour une bonne compréhension de leur origine. Les mesures du rapport 14N/15N faites jusqu'à présent ont montré une grande dispersion des valeurs (de 50 à 441), tous les objets du système solaire excepté Jupiter apparaissant enrichis en 15N comparés à la nébuleuse protosolaire. Différentes explications ont été proposées pour expliquer les valeurs observées, qui sont complexes à interpréter car dues non seulement au réservoir d'origine de l'azote d'où provient l'objet étudié mais également à des mécanismes de fractionnement isotopique. Le cas des comètes, dans ce contexte, est intéressant, car leur composition est supposée relativement proche de celle de la nébuleuse protosolaire et la seule valeur disponible jusqu'à l'année dernière, avait été calculée à partir de la molécule HCN et du radical CN (issu du HCN). Ce rapport était d'environ 150, bien en dessous de la valeur mesurée dans l'atmosphère terrestre (272). Les comètes contiennent beaucoup d'azote sous forme de NH3, photodissocié en NH2 dont les raies sont nombreuses dans le spectre visible. Il était donc possible de mesurer le rapport 14N/15N dans l'ammoniac pour vérifier l'influence possible de phénomènes de fractionnement isotopique entre le HCN et le NH3, ceci à condition de connaître avec précision les longueurs d'onde des raies de 15NH2. Pour déterminer ces longueurs d'onde, nous avons mesuré le spectre d'émission de la transition Ã2A1~X2B1 de 14NH2 et 15NH2 dans la gamme spectrale 5700 Å – 6000 Å sur la ligne AILES du synchrotron SOLEIL, avec un spectromètre par transformée de Fourier. L'analyse de ces spectres a permis, au final, la détection du 15NH2 dans les spectres cométaires et la première détermination du rapport 14N/15N dans l'ammoniac des comètes. [less ▲]

Detailed reference viewed: 6 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting hot Jupiters from WASP-South, Euler and TRAPPIST: WASP-95b to WASP-101b
Hellier, Coel; Anderson, D. R.; Collier Cameron, A. et al

in Monthly Notices of the Royal Astronomical Society (2014)

We report the discovery of the transiting exoplanets WASP-95b, WASP-96b, WASP-97b, WASP-98b, WASP-99b, WASP-100b and WASP-101b. All are hot Jupiters with orbital periods in the range 2.1-5.7 d, masses of ... [more ▼]

We report the discovery of the transiting exoplanets WASP-95b, WASP-96b, WASP-97b, WASP-98b, WASP-99b, WASP-100b and WASP-101b. All are hot Jupiters with orbital periods in the range 2.1-5.7 d, masses of 0.5-2.8 MJup and radii of 1.1-1.4 RJup. The orbits of all the planets are compatible with zero eccentricity. WASP-99b produces the shallowest transit yet found by WASP-South, at 0.4 per cent. The host stars are of spectral type F2-G8. Five have metallicities of [Fe/H] from -0.03 to +0.23, while WASP-98 has a metallicity of -0.60, exceptionally low for a star with a transiting exoplanet. Five of the host stars are brighter than V = 10.8, which significantly extends the number of bright transiting systems available for follow-up studies. WASP-95 shows a possible rotational modulation at a period of 20.7 d. We discuss the completeness of WASP survey techniques by comparing to the HATnet project. [less ▲]

Detailed reference viewed: 13 (0 ULg)
See detailTRAPPIST detection of the light from a bloated hot Jupiter at the edge of tidal disruption
Delrez, Laetitia ULg; Gillon, Michaël ULg; Lendl, Monika ULg et al

Poster (2014, April 30)

Abstract : We present here the discovery by the WASP-­South survey, in close collaboration with the Euler and TRAPPIST telescopes, of the transiting planet WASP-­121b as well as the measurement of its ... [more ▼]

Abstract : We present here the discovery by the WASP-­South survey, in close collaboration with the Euler and TRAPPIST telescopes, of the transiting planet WASP-­121b as well as the measurement of its thermal emission at 0.9 microns. WASP-­121b is a very inflated (1.76 RJup) Jupiter-­mass (1.02 MJup) planet that transits every 1.27 days a bright F6V star. It is remarkable as its orbital radius is only ~10% larger than its Roche limit, suggesting that it might experience mass loss through Roche-­lobe overflow. Thanks to its large size and extreme irradiation (~7 10^9 erg s-1 cm-­2), it was predicted to display a thermal emission of ~0.1% of the stellar flux in the near-­infrared. Using the TRAPPIST robotic telescope, we could detect this thermal emission signal at ~5 sigma in the z'-­band. This measurement, a first for a ground-­based 60cm telescope, allows to place preliminary constraints on the atmospheric properties of this very special hot Jupiter. [less ▲]

Detailed reference viewed: 15 (2 ULg)
Full Text
Peer Reviewed
See detailThe BANANA Project. V. Misaligned and Precessing Stellar Rotation Axes in CV Velorum
Albrecht, Simon; Winn, Joshua N.; Torres, Guillermo et al

in Astrophysical Journal (2014), 785

As part of the Binaries Are Not Always Neatly Aligned project (BANANA), we have found that the eclipsing binary CV Velorum has misaligned rotation axes. Based on our analysis of the Rossiter-McLaughlin ... [more ▼]

As part of the Binaries Are Not Always Neatly Aligned project (BANANA), we have found that the eclipsing binary CV Velorum has misaligned rotation axes. Based on our analysis of the Rossiter-McLaughlin effect, we find sky-projected spin-orbit angles of β[SUB]p[/SUB] = -52° ± 6° and β[SUB]s[/SUB] = 3° ± 7° for the primary and secondary stars (B2.5V + B2.5V, P = 6.9 days). We combine this information with several measurements of changing projected stellar rotation speeds (vsin i [SUB]sstarf[/SUB]) over the last 30 yr, leading to a model in which the primary star's obliquity is ≈65°, and its spin axis precesses around the total angular momentum vector with a period of about 140 yr. The geometry of the secondary star is less clear, although a significant obliquity is also implicated by the observed time variations in the vsin i [SUB]sstarf[/SUB]. By integrating the secular tidal evolution equations backward in time, we find that the system could have evolved from a state of even stronger misalignment similar to DI Herculis, a younger but otherwise comparable binary. Based on observations made with ESOs 2.2 m Telescopes at the La Silla Paranal Observatory under programme ID 084.C-1008 and under MPIA guaranteed time. [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
See detailTRAPPIST monitoring of comet C/2012 F6 (Lemmon)
Opitom, Cyrielle ULg; Jehin, Emmanuel ULg; Manfroid, Jean ULg et al

Poster (2014, April)

C/2012 F6 (Lemmon) is a long period comet discovered by the Mount Lemmon Survey on 2012 March 23 at 5 AU from the sun. C/2012 F6 (Lemmon) reached perihelion on March 23, 2013 at 0.73 AU from the sun. In ... [more ▼]

C/2012 F6 (Lemmon) is a long period comet discovered by the Mount Lemmon Survey on 2012 March 23 at 5 AU from the sun. C/2012 F6 (Lemmon) reached perihelion on March 23, 2013 at 0.73 AU from the sun. In December 2012 the comet was unexpectedly bright, allowing us to make an extensive monitoring during several months with both broadband and narrowband filters to follow the evolution of the comet chemical composition. The monitoring was made with TRAPPIST robotic telescope installed at La Silla observatory [1]. TRAPPIST is a 60-cm telescope dedicated to the study of exoplanets and small bodies in the solar system. The telescope is equipped with a 2Kx2K FLI Proline CCD camera very sensitive in the blue and the red. A set of narrowband cometary filters designed by the NASA for the Hale-Bopp Observing Campaign [2] is permanently mounted on the telescope along with classic Johnson-Cousins B, V, Rc, and Ic filters. We observed the comet from December 11, 2012 to March 4, 2013 (pre-perihelion) and from April 29, 2013 to June 11, 2013 (post-perihelion). At least 2 or 3 observing runs per week were programmed during this period. We collected 1358 images on 52 nights. In January and February the comet visibility allowed us to make several long runs and to detect the comet rotational variability. From the comet images in narrowband filters we studied the gaseous coma chemical composition and activity by deriving OH, NH, CN, C2 and C3 production rates using a classical Haser model [3]. The production and properties of the dust component were studied through the observation of C/2012 F6 (Lemmon) with narrowband continuum filters at 344.2 nm (UC), 444.9 nm (BC), 525.7 nm (GC) and 713.0 nm (RC). We used A(θ)fρ [4] parameter as a proxy for the dust production. [less ▲]

Detailed reference viewed: 19 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting planets from WASP-South, Euler and TRAPPIST: WASP-68 b, WASP-73 b and WASP-88 b, three hot Jupiters transiting evolved solar-type stars
Delrez, Laetitia ULg; Van Grootel, Valérie ULg; Anderson, D. R. et al

in Astronomy and Astrophysics (2014)

Using the WASP transit survey, we report the discovery of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. The planet WASP-68 bhas a mass of 0.95 ± 0.03 MJup, a radius of 1.24-0.06+0.10 RJup ... [more ▼]

Using the WASP transit survey, we report the discovery of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. The planet WASP-68 bhas a mass of 0.95 ± 0.03 MJup, a radius of 1.24-0.06+0.10 RJup, and orbits a V = 10.7 G0-type star (1.24 ± 0.03 M&sun; 1.69-0.06+0.11 R&sun;, Teff = 5911 ± 60 K) with a period of 5.084298 ± 0.000015 days. Its size is typical of hot Jupiters with similar masses. The planet WASP-73 bis significantly more massive (1.88-0.06+0.07 MJup) and slightly larger (1.16-0.08+0.12 RJup) than Jupiter. It orbits a V = 10.5 F9-type star (1.34-0.04+0.05 M&sun;, 2.07-0.08+0.19 R&sun;, Teff = 6036 ± 120 K) every 4.08722 ± 0.00022 days. Despite its high irradiation (~2.3 × 109 erg s-1 cm-2), WASP-73 b has a high mean density (1.20-0.30+0.26 rhoJup) that suggests an enrichment of the planet in heavy elements. The planet WASP-88 bis a 0.56 ± 0.08 MJuphot Jupiter orbiting a V = 11.4 F6-type star (1.45 ± 0.05 M&sun;, 2.08-0.06+0.12 R&sun;, Teff = 6431 ± 130 K) with a period of 4.954000 ± 0.000019 days. With a radius of 1.70-0.07+0.13 RJup, it joins the handful of planets with super-inflated radii. The ranges of ages we determine through stellar evolution modeling are 4.5-7.0 Gyr for WASP-68, 2.8-5.7 Gyr for WASP-73 and 1.8-4.3 Gyr for WASP-88. The star WASP-73 appears to be significantly evolved, close to or already in the subgiant phase. The stars WASP-68 and WASP-88 are less evolved, although in an advanced stage of core H-burning. [less ▲]

Detailed reference viewed: 21 (6 ULg)
Full Text
Peer Reviewed
See detailHigh-frequency A-type pulsators discovered using SuperWASP
Holdsworth, Daniel L.; Smalley, B.; Gillon, Michaël ULg et al

in Monthly Notices of the Royal Astronomical Society (2014)

We present the results of a survey using the WASP archive to search for high-frequency pulsations in F-, A- and B-type stars. Over 1.5 million targets have been searched for pulsations with amplitudes ... [more ▼]

We present the results of a survey using the WASP archive to search for high-frequency pulsations in F-, A- and B-type stars. Over 1.5 million targets have been searched for pulsations with amplitudes greater than 0.5 millimagnitude. We identify over 350 stars which pulsate with periods less than 30 min. Spectroscopic follow-up of selected targets has enabled us to confirm 10 new rapidly oscillating Ap stars, 13 pulsating Am stars and the fastest known δ Scuti star. We also observe stars which show pulsations in both the high-frequency domain and the low-frequency δ Scuti range. This work shows the power of the WASP photometric survey to find variable stars with amplitudes well below the nominal photometric precision per observation. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-103 b: A new planet at the edge of tidal disruption
Gillon, Michaël ULg; Anderson, D. R.; Collier-Cameron, A. et al

in Astronomy and Astrophysics (2014)

We report the discovery of WASP-103b, a new ultra-short-period planet (P=22.2 hr) transiting a 12.1 V-magnitude F8-type main-sequence star (1.22+-0.04 Msun, 1.44-0.03+0.05 Rsun, Teff = 6110+-160 K). WASP ... [more ▼]

We report the discovery of WASP-103b, a new ultra-short-period planet (P=22.2 hr) transiting a 12.1 V-magnitude F8-type main-sequence star (1.22+-0.04 Msun, 1.44-0.03+0.05 Rsun, Teff = 6110+-160 K). WASP-103b is significantly more massive (1.49+-0.09 Mjup) and larger (1.53-0.07+0.05 Rjup) than Jupiter. Its large size and extreme irradiation (around 9 10^9 erg/s/cm^2) make it an exquisite target for a thorough atmospheric characterization with existing facilities. Furthermore, its orbital distance is less than 20% larger than its Roche radius, meaning that it might be significantly distorted by tides and might experience mass loss through Roche-lobe overflow. It thus represents a new key object for understanding the last stage of the tidal evolution of hot Jupiters. [less ▲]

Detailed reference viewed: 24 (4 ULg)
Full Text
Peer Reviewed
See detailToward a Unique Nitrogen Isotopic Ratio in Cometary Ices
Rousselot, Philippe; Pirali, Olivier; Jehin, Emmanuel ULg et al

in Astrophysical Journal Letters (2014), 780

Determination of the nitrogen isotopic ratios in different bodies of the solar system provides important information regarding the solar system's origin. We unambiguously identified emission lines in ... [more ▼]

Determination of the nitrogen isotopic ratios in different bodies of the solar system provides important information regarding the solar system's origin. We unambiguously identified emission lines in comets due to the [SUP]15[/SUP]NH[SUB]2[/SUB] radical produced by the photodissociation of [SUP]15[/SUP]NH[SUB]3[/SUB]. Analysis of our data has permitted us to measure the [SUP]14[/SUP]N/[SUP]15[/SUP]N isotopic ratio in comets for a molecule carrying the amine (-NH) functional group. This ratio, within the error, appears similar to that measured in comets in the HCN molecule and the CN radical, and lower than the protosolar value, suggesting that N[SUB]2[/SUB] and NH[SUB]3[/SUB] result from the separation of nitrogen into two distinct reservoirs in the solar nebula. This ratio also appears similar to that measured in Titan's atmospheric N[SUB]2[/SUB], supporting the hypothesis that, if the latter is representative of its primordial value in NH[SUB]3[/SUB], these bodies were assembled from building blocks sharing a common formation location. [less ▲]

Detailed reference viewed: 23 (7 ULg)
Full Text
Peer Reviewed
See detailHerschel observations of gas and dust in comet C/2006 W3 (Christensen) at 5 AU from the Sun
de Val-Borro, M; Bockelée-Morvan, D; Jehin, Emmanuel ULg et al

in Astronomy and Astrophysics (2014), 564

Detailed reference viewed: 9 (2 ULg)
Full Text
Peer Reviewed
See detailA Monitoring Campaign for Luhman 16AB. I. Detection of Resolved Near-Infrared Spectroscopic Variability
Burgasser, A. J.; Gillon, Michaël ULg; Faherty, J. K. et al

in Astrophysical Journal (2014), 785

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailExtremely Organic-rich Coma of Comet C/2010 G2 (Hill) during its Outburst in 201
Kawakita, H; Dello Russo; Vervack, R et al

in Astrophysical Journal (2014)

Detailed reference viewed: 16 (2 ULg)
Full Text
Peer Reviewed
See detailThe tumbling spin state of (99942) Apophis
Pravec, P; Scheirich, P; Ďurech, J et al

in Icarus (2014), 233

Detailed reference viewed: 15 (0 ULg)