References of "Jérôme, Robert"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAmphiphilic poly(vinyl acetate)-b-poly(N-vinylpyrrolidone) and novel double hydrophilic poly(vinyl alcohol)-b-poly(N-vinylpyrrolidone) block copolymers prepared by cobalt-mediated radical polymerization
Debuigne, Antoine ULg; Willet, Nicolas ULg; Jérôme, Robert ULg et al

in Macromolecules (2007), 40(20), 7111-7118

Well-defined amphiphilic block copolymers of poly(vinyl acetate) (PVAc) and poly(N-vinylpyrrolidone) (PNVP) were synthesized by cobalt-mediated radical polymerization (CMRP). The NVP polymerization ... [more ▼]

Well-defined amphiphilic block copolymers of poly(vinyl acetate) (PVAc) and poly(N-vinylpyrrolidone) (PNVP) were synthesized by cobalt-mediated radical polymerization (CMRP). The NVP polymerization initiated by poly(vinyl acetate) end-capped by the cobalt(II)acetylacetonate complex met the criteria of controlled polymerization, i.e., first-order kinetic in NVP, increase of the molar mass with the NVP conversion, and narrow molar mass distribution. Therefore, the length of the two blocks can be tuned by the [VAc]/[Co(acac)(2)] and the [NVP]/[PVAc] ratios for the synthesis of the macroinitiator and the polymerization of the second monomer, respectively. These amphiphilic PVAc-b-PNVP block copolymers were easily converted into the double hydrophilic PVOH-b-PNVP counterparts by selective methanolysis of the PVAc block. These two types of copolymers were prone to self-association into micelles in appropriate solvents. [less ▲]

Detailed reference viewed: 38 (5 ULg)
Full Text
See detailMacromolecular engineering of cyclic aliphatic polyesters by ring-opening polymerization and "click" chemistry
Lecomte, Philippe ULg; Li, Haiying; Riva, Raphaël ULg et al

Conference (2007, September 04)

The last decades have witnessed a steadily increasing progress in the macromolecular engineering of the main families of synthetic polymers. Ring-shaped copolymers show a unique topology due to the ... [more ▼]

The last decades have witnessed a steadily increasing progress in the macromolecular engineering of the main families of synthetic polymers. Ring-shaped copolymers show a unique topology due to the absence of any chain-end and exhibit distinct properties from their linear counterparts, such as glass transition temperature, order-disorder transition, reduced viscosity, lower hydrodynamic volumes. This communication aims at reporting on a novel route to biodegradable cyclic polyesters. Our strategy is based on the work of Prof. Kricheldorf who initiated the ring-opening polymerization of ε-caprolactone by cyclic tin dialkoxides, e.g., 2,2-dibutyl-2-stanna-1,3-dioxepane (DSDOP) in order to obtain “living” macrocyclic PCL, still containing two endocyclic tin-oxygen bonds. In this work, the resumption of polymerization by a few units of ε-caprolactone substituted by an acrylic unit, e.g., 1-(2-oxooxepan-3-yl)ethyl prop- 2-enoate, followed by intramolecular photo-crosslinking of pendant unsaturations and finally by hydrolysis gave rise to macrocyclic PCL. As a rule, this strategy is very well-suited for the synthesis of high molecular weight PCL. Moreover, tin alkoxides were kept untouched after the cross-linking step and remained thus available for further macromolecular engineering. The process was extended to the synthesis of other architectures such as sun-shaped, two-tail tadpoleshaped, and eight-shaped copolyesters. The second part of the lecture, it will be shown that the copper(I)-catalyzed Huisgen’s [3+2] cycloaddition, which is the most popular “Click" reaction, is very efficient to graft alkynes, duly substituted by functional groups or chains, onto aliphatic copolyesters bearing pendant azides. Interestingly enough, mild conditions were found and no degradation was observed during the “click” derivatization of copolyesters of PCL. The “click” reactions of alkynes onto pendant azides of copolyesters of PLA, by far more sensitive than PCL, was also successfully carried out without any detectable degradation. ”Click” chemistry is very versatile because this reaction was successfully implemented to graft functional groups or chains directly onto ω-azido-ε-caprolactone, without any ring-opening of the lactone, in order to make available a new range of functional caprolactones. Finally, the “click” grafting of PEO onto the tails of tadpole-shaped copolymers will be shown to be a route to amphiphilic copolymers with an original architecture. [less ▲]

Detailed reference viewed: 28 (4 ULg)
Full Text
Peer Reviewed
See detailAtomic force microscopy investigation of the morphology and the biological activity of protein-modified surfaces for bio- and immunosensors
Cecchet, Francesca; Duwez, Anne-Sophie ULg; Gabriel, Sabine ULg et al

in Analytical Chemistry (2007), 79(17), 6488-6495

With the purpose of developing biosensors, the reliable proof of the biological activity of two new sensor systems was obtained by atomic force microscopy (AFM) in both the imaging and the single-molecule ... [more ▼]

With the purpose of developing biosensors, the reliable proof of the biological activity of two new sensor systems was obtained by atomic force microscopy (AFM) in both the imaging and the single-molecule force spectroscopy modes. Antigens or antibodies of pharmacological interest were grafted onto self-assembled monolayers of thiols on gold, and AFM imaging demonstrated that the grafting process produced homogeneous submonolayers of isolated proteins. The analysis of the morphology of the surfaces at the different functionalization steps allowed evaluating the protein grafting density and showed that the recognition of complementary species present in the surrounding solution occurred. Single-molecule force spectroscopy experiments between the sensing surfaces and AFM probes, onto which the complementary species were grafted, enabled a direct and rapid test of the biological activity of the sensors by investigating the interaction occurring at the level of one single ligand-receptor bond. Ellipsometry and surface plasmon resonance allowed further characterization of the sensor surfaces and confirmed that the biological recognition took place. [less ▲]

Detailed reference viewed: 45 (14 ULg)
Full Text
Peer Reviewed
See detailMannosylated poly(ethylene oxide)-b-Poly(epsilon-caprolactone) diblock copolymers: Synthesis, characterization, and interaction with a bacterial lectin
Rieger, Jutta ULg; Stoffelbach, François; Cui, Di et al

in Biomacromolecules (2007), 8(9), 2717-2725

A novel bioeliminable amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) diblock copolymer end-capped by a mannose residue was synthesized by sequential controlled polymerization of ... [more ▼]

A novel bioeliminable amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) diblock copolymer end-capped by a mannose residue was synthesized by sequential controlled polymerization of ethylene oxide and epsilon-caprolactone, followed by the coupling of a reactive mannose derivative to the PEO chain end. The anionic polymerization of ethylene oxide was first initiated by potassium 2-dimethylaminoethanolate. The ring-opening polymerization of epsilon-caprolactone was then initiated by the omega-hydroxy end-group of PEO previously converted into an Al alkoxide. Finally, the saccharidic end-group was attached by quaternization of the tertiary amine (alpha-end-group of the PEO-b-PCL with a brominated mannose derivative. The copolymer was fully characterized in terms of chemical composition and purity by high-resolution NMR spectroscopy and size exclusion chromatography. Furthermore, measurements with a pendant drop tensiometer showed that both the mannosylated copolymer and the non-mannosylated counterpart significantly decreased the dichloromethane/water interfacial tension. Moreover, these amphiphilic copolymers formed monodisperse spherical micelles in water with an average diameter of similar to 11 nin as measured by dynamic light scattering and cryo-transmission electron microscopy. The availability of mannose as a specific recognition site at the surface of the micelles was proved by isothermal titration microcalorimetry (ITC), using the BclA lectin (from Burkholderia cenocepacia), which interacts selectively with a-D-mannopyranoside derivatives. The thermodynamic parameters of the lectin/mannose interaction were extracted from the ITC data. These colloidal systems have great potential for drug targeting and vaccine delivery systems. [less ▲]

Detailed reference viewed: 64 (4 ULg)
Full Text
Peer Reviewed
See detailSynthesis and characterization of novel vinyl copolymers containing N-vinylphthalimide: Comonomers reactivity ratios and thermal stability
Chikhaoui-Grioune, Djamila; Benaboura, Ahmed; Jérôme, Robert ULg

in European Polymer Journal (2007), 43(9), 3849-3855

N-Vinylphthalimide (NVPh) was copolymerized with p-methylstyrene (PMS), p-methoxystyrene (PMOS) and p-chlorostyrene (PCIS) at 60 degrees C, with 2,2'-azo-bis-isobutyronitrile as an initiator. Copolymer ... [more ▼]

N-Vinylphthalimide (NVPh) was copolymerized with p-methylstyrene (PMS), p-methoxystyrene (PMOS) and p-chlorostyrene (PCIS) at 60 degrees C, with 2,2'-azo-bis-isobutyronitrile as an initiator. Copolymer composition was determined by elemental analysis in case of the N-vinylphthalimide and p-methylstyrene comonomer pair, whereas proton nuclear magnetic resonance was used for the analysis of the two other copolymers. The reactivity ratios for each comonomer pair were estimated by the classical Fineman-Ross and Kelen-Tudos linear techniques. These data showed that N-vinylphthalimide was less reactive in all the cases and that the comonomer distribution, that was basically random in the poly(N-vinylphthalimide-co-p-methylstyrene) and poly(N-vinylphthalimide-co-p-chlorostyrene) copolymers, was rather alternate in the third poly(N-vinylphthalimide-co-p-methoxystyrene) copolymer. The difference observed in the reactivity ratios was discussed in reference to the structure of the comonomer units and the parent radicals. The thermal properties of the copolymers and model homopolymers were investigated by differential scanning calorimetry and thermogravimetric analysis. [less ▲]

Detailed reference viewed: 44 (2 ULg)
Full Text
Peer Reviewed
See detailSwelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives
Bartil, Tahar; Bounekhel, Mahmoud; Calberg, Cédric ULg et al

in Acta Pharmaceutica (Zagreb, Croatia) (2007), 57(3), 301-314

The purpose of this study is to develop novel intestinal-specific drug delivery systems with pH sensitive swelling and drug release properties. Methacrylic-type polymeric prodrugs were synthesized by free ... [more ▼]

The purpose of this study is to develop novel intestinal-specific drug delivery systems with pH sensitive swelling and drug release properties. Methacrylic-type polymeric prodrugs were synthesized by free radical copolymerization of methacrylic acid, poly(ethyleneglycol monomethyl ether methacrylate) and a methacrylic derivative of N-(4-hydroxyphenyl)-2-(4-methoxyphenyl) acetamide in the presence of ethylene glycol dimethacrylate as crosslinking agent. The effect of copolymer composition on the swelling behavior and hydrolytic degradation were studied in simulated gastric (SGF, pH 1.2) and intestinal fluids (SIF, pH 7.0). The dynamic swelling behavior of these hydrogels was investigated to determine the mechanism of water transport through these hydrogels. The mechanism of water transport through the gels was significantly affected by the pH of the swelling medium and became more relaxation-controlled in a swelling medium of pH 7.0. The swelling and hydrolytic behaviors of hydrogels were dependent on the content of methacrylic acid (MAA) groups and caused a decrease and increase in gel swelling in SGF and SIF, respectively. Drug release studies showed that the increasing content of MAA acid in the copolymer enhances hydrolysis in SIF. These results suggest that pH-sensitive systems could be useful for preparation of a muccoadhesive system and controlled release of N-(4-hydroxyphenyl)-2-(4-methoxyphenyl) acetamide. [less ▲]

Detailed reference viewed: 93 (4 ULg)
Full Text
See detailContribution of "click" chemistry to the functionalization of aliphatic polyesters
Schmeits, Stephanie ULg; Riva, Raphaël ULg; Zednik, Jiri et al

Poster (2007, August 31)

Detailed reference viewed: 27 (11 ULg)
See detailBiosensors based on electrochemically prepared polyanilines and bifunctional hybrid proteins
Faure, Emilie ULg; Halusiak, Emilie; Ruth, Nadia ULg et al

Poster (2007, August 31)

Detailed reference viewed: 29 (11 ULg)
See detailPolymer/carbon nanotubes nanocomposites
Thomassin, Jean-Michel ULg; Caldarella, Giuseppe ULg; Germain, Albert ULg et al

Poster (2007, August 31)

Detailed reference viewed: 24 (2 ULg)
See detailImplantable hydrogels
Zalfen, Alina; Bozukova, Dimitriya; Jérôme, Robert ULg et al

Poster (2007, August 31)

Detailed reference viewed: 24 (3 ULg)
See detailTrithiocarbonate (macro) RAFt agents for the preparation of polymeric nanomaterials in homogeneous and heterogeneous media
Rieger, Jutta; Alaimo, David ULg; Carron, Amélie et al

Poster (2007, August 31)

Detailed reference viewed: 30 (3 ULg)
See detailElectrospinning and nanofibers
Sorlier, Pierre; Grignard, Bruno ULg; Mitu, Alina et al

Poster (2007, August 31)

Detailed reference viewed: 24 (1 ULg)
See detailNovel amphiphilic degradable copolymers for drug deivery systems
Van Butsele, Kathy; Freichels, Hélène ULg; Rieger, Jutta et al

Poster (2007, August 31)

Detailed reference viewed: 15 (1 ULg)
See detailCobalt(II) complexes as controlling agents for the radical polymerization of vinyl monomers
Debuigne, Antoine ULg; Sciannaméa, Valérie; Piette, Yasmine ULg et al

Poster (2007, August 31)

Detailed reference viewed: 14 (3 ULg)
Full Text
See detailMacromolecular engineering of aliphatic polyesters based on macrocyclic units
Lecomte, Philippe ULg; Li, Haiying; Riva, Raphaël ULg et al

Poster (2007, August 31)

The last decades have witnessed a steadily increasing progress in the macromolecular engineering of the main families of synthetic polymers. Ring-shaped copolymers show a unique topology due to the ... [more ▼]

The last decades have witnessed a steadily increasing progress in the macromolecular engineering of the main families of synthetic polymers. Ring-shaped copolymers show a unique topology due to the absence of any chain-end and exhibit distinct properties from their linear counterparts, such as glass transition temperature, order-disorder transition, reduced viscosity, lower hydrodynamic volumes. This communication aims at reporting on a novel route to biodegradable cyclic polyesters. Our strategy is based on the work of Prof. Kricheldorf who initiated the ring-opening polymerization of ε-caprolactone by cyclic tin dialkoxides, e.g., 2,2-dibutyl-2-stanna-1,3-dioxepane (DSDOP) in order to obtain “living” macrocyclic PCL, still containing two endocyclic tin-oxygen bonds. In this work, the resumption of polymerization by a few units of ε-caprolactone substituted by an acrylic unit, e.g., 1-(2-oxooxepan-3-yl)ethyl prop-2-enoate, followed by intramolecular photo-cross-linking of pendant unsaturations and finally by hydrolysis gave rise to macrocyclic PCL. As a rule, this strategy is very well-suited for the synthesis of high molecular weight PCL. Moreover, tin alkoxides were kept untouched after the cross-linking step and remained thus available for further macromolecular engineering. The process was extended to the synthesis of other architectures such as sun-shaped, two-tail tadpole-shaped, eight-shaped and symmetrical four-tail eight-shaped copolyesters. [less ▲]

Detailed reference viewed: 16 (5 ULg)
Full Text
See detailUse of supercritical carbon dioxide for polym/clay nanocomposites preparation and foaming
Urbanczyk, Laetitia ULg; Stassin, Fabrice; Calberg, Cédric ULg et al

Poster (2007, August 31)

Detailed reference viewed: 10 (1 ULg)