References of "Jérôme, Christine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA comprehensive density functional theory study of the key role of fluorination and dual hydrogen bonding in the activation of the epoxide/CO2 coupling by fluorinated alcohols
Alves, Margot ULg; Méreau, Raphaël; Grignard, Bruno ULg et al

in RSC Advances (2016), 6(43), 36327-36335

The activation mechanism of the CO2/propylene oxide coupling catalysed by a bicomponent organocatalyst combining the use of TBABr with (multi)phenolic or fluorinated hydrogen bond donors (HBDs) was ... [more ▼]

The activation mechanism of the CO2/propylene oxide coupling catalysed by a bicomponent organocatalyst combining the use of TBABr with (multi)phenolic or fluorinated hydrogen bond donors (HBDs) was investigated using the Density Functional Theory (DFT). Thus, it was shown that increasing the number of electron withdrawing trifluoromethyl substituents in HBDs strengthens their proton donor capability and allows a better stabilization by hydrogen bonding of the intermediates and transition states. In addition, the high efficiency of fluorinated monoalcohol activators is related to a dual hydrogen bonding mechanism by two fluorinated molecules that cooperatively contribute to the CO2/propylene oxide coupling. [less ▲]

Detailed reference viewed: 44 (10 ULg)
Full Text
Peer Reviewed
See detailCore cross-linked micelles of polyphosphoester containing amphiphilic block copolymers as drug nanocarriers
Ergül, Zeynep ULg; Vanslambrouck, Stéphanie; Cajot, Sébastien et al

in RSC Advances (2016), 6(48), 42081-42088

Poly(ethylene oxide)-b-polyphosphoester amphiphilic block copolymers are known to self-assemble into polymer micelles when dissolved into water. This work aims at reporting on the improvement of the ... [more ▼]

Poly(ethylene oxide)-b-polyphosphoester amphiphilic block copolymers are known to self-assemble into polymer micelles when dissolved into water. This work aims at reporting on the improvement of the stability of the micelles at high dilution by crosslinking the hydrophobic polyphosphoester micellar core. Typically, an unsaturated alkene side-chain was introduced on the cyclic phosphate monomer according to a one-step reaction followed by its organocatalyzed polymerization initiated by a poly(ethylene oxide) macroinitiator. This strategy avoids the use of any organometallic compounds in order to facilitate the purification and meet the stringent requirements of biomedical applications. After self-assembly into water, the micelles were cross-linked by simple UV irradiation. These cross-linked micelles have then been loaded by doxorubicin to evaluate their potential as drug nanocarriers and monitor the impact of crosslinking on the release profile. [less ▲]

Detailed reference viewed: 39 (15 ULg)
See detailOrganocatalytic coupling of carbon dioxide with epoxides: the unexpected booster effect of fluoroalcohols
Grignard, Bruno ULg; Gennen, Sandro ULg; Alves, Margot ULg et al

Poster (2015, December 19)

Valorising CO2 as a C1 feedstock for producing added value building blocks is seducing as it is a free and in exhaustive waste resulting from human activity. Carbon dioxide is a thermodynamically and ... [more ▼]

Valorising CO2 as a C1 feedstock for producing added value building blocks is seducing as it is a free and in exhaustive waste resulting from human activity. Carbon dioxide is a thermodynamically and kinetically stable molecule that can be converted into cyclic carbonates by coupling with epoxides. Cyclic carbonates are valuable products that find applications as solvents, electrolytes or as monomers for polyurethanes synthesis. Although the CO2/epoxide coupling reaction has been extensively studied, the development of organocatalysts that are highly efficient under mild experimental conditions still remains a challenge. Onium salts are the most common catalysts that show reasonable catalytic activity at high pressure (> 100 bars) and high temperature (> 100°C) only. Fortunately, the efficiency of these organocatalysts can be improved by addition of appropriate hydrogen bond donors activators (HBD). In this talk, we will report the development of a new highly efficient catalytic platform consisting in an onium halide salt combined with HBD activators for the fast and solvent-free synthesis of cyclic carbonates by coupling CO2 with epoxides. The cocatalytic effect of series of HBDs will be demonstrated by detailed online kinetics studies under pressure using Raman or IR spectroscopy. We will show that our new organocatalytic platform facilitates the fast conversion of epoxy groups into cyclic carbonates under mild experimental conditions, and can be easily implemented to the modification of epoxidized vegetable oils. The synergistic effects between HBDs and onium salt will be highlighted by a detailed mechanistic study of the reaction through DFT calculations. [less ▲]

Detailed reference viewed: 42 (3 ULg)
See detailOrganometallic-mediated radical polymerization, a versatile tool for the precision synthesis of unprecedented copolymers
Detrembleur, Christophe ULg; Cordella, Daniela ULg; Demarteau, Jérémy ULg et al

Conference (2015, December 17)

Controlled radical polymerization techniques give access to innovative (multi)functional polymeric materials for advanced applications. Organometallic-mediated radical polymerization (OMRP) is one of ... [more ▼]

Controlled radical polymerization techniques give access to innovative (multi)functional polymeric materials for advanced applications. Organometallic-mediated radical polymerization (OMRP) is one of these techniques that enable the preparation of unprecedented copolymers, and is based on the temporary deactivation of the propagating chains by a transition metal complex. The strength of the carbon-metal bond at the polymer chain-end is dictating the reactivity of the system. One of the most efficient OMRP process involves the commercially available Co(acac)2. Recent studies have demonstrated that the system reactivity is easily modulated by the addition of some molecules able to coordinate the cobalt complex, by tuning the temperature, or by UV irradiation. The facile modulation of the C-Co bond strength has enabled to control the polymerization of monomers of opposite reactivity, such as vinyl esters and acrylates, and to synthesize novel well-defined (co)polymers under very mild experimental conditions. In this talk, we will discuss some recent breakthroughs in the field that illustrate the huge potential of the process for the design of unique functional macromolecules. More precisely, we will describe the first control of the copolymerization of ethylene with a series of functional vinyl monomers under mild experimental conditions that leads to random copolymers with ethylene content up to 60 mol% and negligible chain branching. The first one-pot synthesis of novel ethylene-based block copolymers will also be discussed. Additionally, we will demonstrate the implementation of the OMRP process to aqueous based media by describing, amongst other examples, the precision synthesis of innovative functional (telechelic) poly(ionic liquid)s (PILs) in water. [less ▲]

Detailed reference viewed: 49 (5 ULg)
See detailSynthesis of functional polyphosphates for hydrogel and particle drug delivery systems
Vanslambrouck, Stéphanie; Ergül, Zeynep ULg; Clément, Benoit et al

Conference (2015, December 02)

Thanks to their biocompatibility and degradability properties, polyphosphates are appealing polymers for biomedical applications. In contrast to aliphatic polyesters, such as poly(ε-caprolactone) and poly ... [more ▼]

Thanks to their biocompatibility and degradability properties, polyphosphates are appealing polymers for biomedical applications. In contrast to aliphatic polyesters, such as poly(ε-caprolactone) and poly(lactide), the pentavalency of the phosphorus atom allows the easy modification of the polyphosphate properties by simply adjusting the nature, the length and the functionality of the polyphosphate pendant groups. Macromolecular engineering of polyphosphoesters was applied to design well-defined architectures and functionalities adapted to drug nanocarriers. In a first approach, amphiphilic block copolymers are synthesized by organo-catalyzed ring-opening polymerization process for the synthesis of a range of PEO-b-polyphosphate bearing various pendant groups. Post-polymerization thiol-ene click reactions preformed on PEO-b-polyphosphate copolymers was also investigated to improve the hydrophobicity of the polyphosphate. The self-assembly of these PEO-b-polyphosphate copolymers into micelles was investigated, particularly, the effect of the nature of the polyphosphate pendant groups (i) on the micelles characteristics, (ii) on the encapsulation of a poorly soluble drug and (iii) on the drug release profile. The toxicity of the different amphiphilic block copolymers was also evaluated by live/dead cell viability assays. In a second approach, double hydrophilic copolymers based on polyphosphoesters have been used as templating agent for the synthesis of calcium carbonate particles. Indeed, the use of such microparticles is becoming more and more attractive in many fields especially for biomedical applications for which fine tuning of size, morphology and crystalline form of CaCO3 particles is crucial. Although some structuring compounds, like hyaluronic acid, give satisfying results, the control of the particle structure still has to be improved. To this end, we evaluated the CaCO3 structuring capacity of the well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and of a polyphosphoester segment with affinity for calcium like poly(phosphotriester)s bearing pendant carboxylic acids or poly(phosphodiester)s with a negatively charged oxygen atom on each repeating monomer unit. [less ▲]

Detailed reference viewed: 99 (8 ULg)
Full Text
Peer Reviewed
See detailDrug-polymer electrostatic complexes as new structuring agents for the formation of drug-loaded ordered mesoporous silica
Molina, Emilie; Warnant, Jérôme; Mathonnat, Mélody et al

in Langmuir (2015), 31(47), 12839-12844

Using aminoglycoside antibiotics as drug models, it was shown that electrostatic complexes between hydrophilic drugs and oppositely charged double-hydrophilic block copolymers can form ordered mesophases ... [more ▼]

Using aminoglycoside antibiotics as drug models, it was shown that electrostatic complexes between hydrophilic drugs and oppositely charged double-hydrophilic block copolymers can form ordered mesophases. This phase behaviour was evidenced by using poly(acrylic acid)-block-poly(ethylene oxide) block copolymers in the presence of silica precursors and, this allowed preparing drug-loaded mesoporous silica directly from the drug-polymer complexes. The novel synthetic strategy of the hybrid materials is highly efficient, avoiding waste and multi-step processes; it also ensures optimal drug loading and provides pH-dependence of the drug release from the materials. [less ▲]

Detailed reference viewed: 25 (5 ULg)
Full Text
Peer Reviewed
See detailSynthesis of polyphosphodiesters by ring-opening polymerization of cyclic phosphates bearing allyl phosphoester protecting groups
Clément, Benoit; Molin, Daniel G.; Jérôme, Christine ULg et al

in Journal of Polymer Science. Part A, Polymer Chemistry (2015), 53(22), 2642-2648

The allyl phosphoester group is shown to be a protecting group for the synthesis of anionic polyphosphodiesters. Our strategy relies on the synthesis of a cyclic phosphate monomer bearing a pendant allyl ... [more ▼]

The allyl phosphoester group is shown to be a protecting group for the synthesis of anionic polyphosphodiesters. Our strategy relies on the synthesis of a cyclic phosphate monomer bearing a pendant allyl phosphoester group, its easy purification by fractional distillation, its organocatalyzed ring-opening polymerization by 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) and 1-[3,5-bis(trifluoromethyl)phenyl]-3-cyclohexyl-thiourea (TU). Finally, the deprotection of the allyl phosphoester group is carried out by reaction with sodium benzenethiolate in the absence of any detectable degradation. [less ▲]

Detailed reference viewed: 88 (25 ULg)
See detailPolymer chemistry for theragnostics
Liu, Ji; Detrembleur, Christophe ULg; Duguet, Etienne et al

Conference (2015, November)

Stimuli-responsive nano-materials have been playing increasingly important roles in the biomedical field due to their ability to adapt their physico-chemical properties in response to external stimuli ... [more ▼]

Stimuli-responsive nano-materials have been playing increasingly important roles in the biomedical field due to their ability to adapt their physico-chemical properties in response to external stimuli, such as temperature, pH, ionic strength, magnetic field, etc. Nanohybrids combining inorganic particles and stimuli-responsive polymers are particularly well-suited to develop advanced drug nanocarriers for targeted delivery and concomitant diagnostics. Based on the recent developments in controlled radical polymerization, especially cobalt-mediated radical polymerization, various hybrid nanostructures have been synthesized and tested as drug delivery systems able to trigger the drug release in response to dedicated environment conditions or external stimuli. Studies on cytotoxicity, cellular uptake and in vitro triggered release with cell culture will also highlight the potential of these new materials. [less ▲]

Detailed reference viewed: 102 (7 ULg)
See detailCaCO3 particles for drug delivery systems
Ergül, Zeynep ULg; Jérôme, Christine ULg; Debuigne, Antoine ULg et al

Scientific conference (2015, October 22)

Detailed reference viewed: 19 (3 ULg)
See detailNew synthetic possibilities offered by organometallic-mediated radical polymerization
Debuigne, Antoine ULg; Demarteau, Jérémy ULg; Kermagoret, Anthony et al

Scientific conference (2015, October 08)

In the last years, considerable efforts have been devoted to the development of methods for controlling the radical polymerization of vinyl monomers and designing a large range of well-defined ... [more ▼]

In the last years, considerable efforts have been devoted to the development of methods for controlling the radical polymerization of vinyl monomers and designing a large range of well-defined macromolecular structures with specific properties. Although significant progress has been made, there is still room for improvements especially for the so-called ‘less activated’ monomers (LAMs) like vinyl esters, N-vinylamides, olefins, etc. This presentation aims to describe the potential of the Organometallic-Mediated Radical Polymerization (OMRP) for controlling the polymerization of these challenging monomers. Basic principles of OMRP will be presented as well as cutting edge developments in this field like the precision design of ethylene-vinyl acetate copolymers (EVAs) or the synthesis of novel alkylcobalt(III) species used as functional OMRP initiator for producing unique well-defined α-functional polymers. [less ▲]

Detailed reference viewed: 57 (6 ULg)
Full Text
Peer Reviewed
See detailHalomethyl-cobalt(bis-acetylacetonate) for the controlled synthesis of functional polymers
Demarteau, Jérémy ULg; Kermagoret, Anthony; German, Ian et al

in Chemical Communications (2015), 51(76), 14334-14337

Novel organocobalt complexes featuring weak C–CoL2 bonds (L = acetylacetonate) are prepared and used as sources of halomethyl radicals. They permit the precision synthesis of a-halide functionalized and ... [more ▼]

Novel organocobalt complexes featuring weak C–CoL2 bonds (L = acetylacetonate) are prepared and used as sources of halomethyl radicals. They permit the precision synthesis of a-halide functionalized and telechelic polymers in organic media or in water. Substitution of halide by azide allows derivatization of polymers using the CuAAC click reaction. [less ▲]

Detailed reference viewed: 66 (32 ULg)
See detailPhotocrosslinked hydrogels for guided periodontal tissue regeneration
Chichiricco, Pauline Marie ULg; Weis, Pierre; Struillou, Xavier et al

Conference (2015, October)

Detailed reference viewed: 26 (2 ULg)
Full Text
Peer Reviewed
See detailEnzymatic functionalization of a nanobody using protein insertion technology
Crasson, Oscar ULg; Rhazi, Noureddine; Jacquin, Olivier et al

in Protein Engineering, Design & Selection (2015), 28(10), 451-460

Antibody-based products constitute one of the most attractive biological molecules for diagnostic, medical imagery and therapeutic purposes with very few side effects. Their development has be- come a ... [more ▼]

Antibody-based products constitute one of the most attractive biological molecules for diagnostic, medical imagery and therapeutic purposes with very few side effects. Their development has be- come a major priority of biotech and pharmaceutical industries. Recently, a growing number of modified antibody-based products have emerged including fragments, multi-specific and conjugate antibodies. In this study, using protein engineering, we have functionalized the anti-hen egg-white lysozyme (HEWL) camelid VHH antibody fragment (cAb-Lys3), by insertion into a solvent-exposed loop of the Bacillus licheniformis β-lactamase BlaP. We showed that the generated hybrid protein conserved its enzymatic activity while the displayed nanobody retains its ability to inhibit HEWL with a nanomolar affinity range. Then, we successfully implemented the functionalized cAb-Lys3 in enzyme-linked immunosorbent assay, potentiometric biosensor and drug screening assays. The hybrid protein was also expressed on the surface of phage particles and, in this context, was able to interact specifically with HEWL while the β-lactamase activity was used to monitor phage interactions. Finally, using thrombin-cleavage sites surrounding the permissive insertion site in the β-lactamase, we reported an expression system in which the nanobody can be easily separated from its carrier protein. Altogether, our study shows that insertion into the BlaP β-lactamase consti- tutes a suitable technology to functionalize nanobodies and allowsthe creation of versatile tools that can be used in innovative biotechnological assays. [less ▲]

Detailed reference viewed: 53 (18 ULg)
Full Text
Peer Reviewed
See detailSynthesis of aliphatic polyamide bearing fluorinated groups from ε-caprolactam and modified cyclic lysine
Tunc, Deniz; Bouchekiv, Hassen; Améduri, Bruno et al

in European Polymer Journal (2015), 71

Aliphatic polyamide (PA) bearing fluorinated groups was synthesized in bulk with perfluorobutyryl-substituted α-amino-ε-caprolactam and ε-caprolactam by anionic ring-opening polymerization (AROP). The ... [more ▼]

Aliphatic polyamide (PA) bearing fluorinated groups was synthesized in bulk with perfluorobutyryl-substituted α-amino-ε-caprolactam and ε-caprolactam by anionic ring-opening polymerization (AROP). The fluorinated monomer was obtained by condensation between cyclic lysine (i.e. α-amino-ε-caprolactam) and perfluorobutyrylchloride. The effect of the fluorinated monomer fraction onto the AROP of ε-caprolactam was monitored by the exothermicity of this polymerization versus time. The properties and characteristics of the resulting polymers were studied by with differential scanning calorimetry, thermogravimetry, magic angle spining NMR, FT-IR, and contact angle measurements. Polyamides bearing fluorinated groups exhibited better thermal stability than polyamide 6 (PA6) as well as a higher hydrophobic surface character as evidenced by surface tension measurements. The glass transition temperature of polyamide 6 was 53 °C and rose to 58 °C for a PA bearing fluorinated moieties, while fluorinated monomer insertion induced a decrease of the melting points from 216 to 198 °C. These copolymers displayed a maximum degradation temperature of 390 °C as compared to the 310 °C for PA6, and their surface energies decreased from 49.4 mN.cm-1 (PA6 value) to 44.1 mN.cm-1. [less ▲]

Detailed reference viewed: 56 (11 ULg)
Full Text
Peer Reviewed
See detailDouble hydrophilic polyphosphoester containing copolymers as efficient templating agents for calcium carbonate microparticles
Ergül, Zeynep ULg; Debuigne, Antoine ULg; Calvignac, Brice et al

in Journal of Materials Chemistry B (2015), 3(36), 7227-7236

The use of calcium carbonate (CaCO3) microparticles is becoming more and more attractive in many fields especially in biomedical applications in which the fine tuning of the size, morphology and ... [more ▼]

The use of calcium carbonate (CaCO3) microparticles is becoming more and more attractive in many fields especially in biomedical applications in which the fine tuning of the size, morphology and crystalline form of the CaCO3 particles is crucial. Although some structuring compounds, like hyaluronic acid, give satisfying results, the control of the particle structure still has to be improved. To this end, we evaluated the CaCO3 structuring capacity of novel well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and a polyphosphoester segment with an affinity for calcium like poly(phosphotriester)s bearing pendent carboxylic acids or poly(phosphodiester)s with a negatively charged oxygen atom on each repeating monomer unit. These copolymers were synthesized by a combination of organocatalyzed ring opening polymerization, thiol–yne click chemistry and protection/deprotection methods. The formulation of CaCO3 particles was then performed in the presence of these block copolymers (i) by the classical chemical pathway involving CaCl2 and Na2CO3 and (ii) by a process based on supercritical carbon dioxide (scCO2) technology in which CO32− ions are generated in aqueous media and react with Ca2+ ions. Porous CaCO3 microspheres composed of vaterite nanocrystals were obtained. Moreover, a clear dependence of the particle size on the structure of the templating agent was emphasized. In this work, we show that the use of the supercritical process and the substitution of hyaluronic acid for a carboxylic acid containing copolymer decreases the size of the CaCO3 particles by a factor of 6 (∼1.5 μm) while preventing their aggregation. [less ▲]

Detailed reference viewed: 70 (9 ULg)
Full Text
Peer Reviewed
See detailInfluence of the macromolecular surfactant features and reactivity on morphology and surface properties of emulsion-templated porous polymers
Mathieu, Kevin ULg; Jérôme, Christine ULg; Debuigne, Antoine ULg

in Macromolecules (2015), 48(18), 6489-6498

This work investigates key parameters of a straightfor- ward macromolecular surfactant-assisted functionalization strategy of porous polymers produced by high internal phase emulsion (HIPE) polymerization ... [more ▼]

This work investigates key parameters of a straightfor- ward macromolecular surfactant-assisted functionalization strategy of porous polymers produced by high internal phase emulsion (HIPE) polymerization. For that purpose, a series of well-defined amphiphilic poly(ethylene oxide)-b-poly(styrene) (PEO-b-PS) copolymers with various compositions and molar masses were synthesized by radical addition−fragmentation chain transfer (RAFT) polymerization and used as macromolecular surfactants for the emulsion-templated polymerization of styrene/divinylbenzene (S/DVB). The morphology of the resulting foams, referred to as polyHIPEs, was found dependent on the PS block length and concentration of the block copolymer surfactant in the emulsion. Moreover, we determined the lowest PS block length required for preserving the anchoring of the copolymer at the surface by physical entanglement within the S/DVB cross-linked matrix leading to a PEO-coated porous material. The functionalization of the porous monoliths with PEO was evidenced by sessile drop shape analyses and water uptake experiments. The chemical anchoring of the PEO-b-PS at the surface of polyHIPEs was also explored by interfacial initiation of the HIPE polymerization from a PEO-b-PS-RAFT macroinitiator leading to porous structures with permanent PEO coatings. In this case, copolymerizing DVB with acrylate instead of styrene improved the interconnectivity of the porous monoliths. [less ▲]

Detailed reference viewed: 45 (13 ULg)
See detailNew efficient organocatalytic system for solvent-free chemical fixation of CO2 into epoxides
Panchireddy, Satyannarayana ULg; Gennen, Sandro ULg; Alves, Margot ULg et al

Poster (2015, September 11)

Due to concerns about global warming combined with the decrease of fossil resources, the chemical transformation of carbon dioxide (CO2) into added-value products has gained interest in both academic and ... [more ▼]

Due to concerns about global warming combined with the decrease of fossil resources, the chemical transformation of carbon dioxide (CO2) into added-value products has gained interest in both academic and industrial fields. To date, the chemical fixation of CO2 onto epoxides with the formation of cyclic carbonates (CC) is one of the most promising ways to valorise CO2 at an industrial scale. Indeed, CC are useful monomers for polycarbonate synthesis and they can react with primary amines to produce 2-hydroxyethylurethane. This reaction can be extrapolated to the synthesis of non-isocyanate polyurethanes (NIPUs) by a step growth polymerization between bifunctional CC and diamines. [less ▲]

Detailed reference viewed: 133 (12 ULg)
Full Text
See detailCobalt-mediated radical polymerization for the precision design of novel poly(ionic liquid) copolymers in aqueous media
Cordella, Daniela ULg; Kermagoret, Anthony; Debuigne, Antoine ULg et al

Poster (2015, September 11)

Poly(ionic liquid)s (PILs) have emerged as a special class of polyelectrolyte materials, featuring tunable solubility, high ionic conductivity, and a broad range of glass transition temperatures. Due to ... [more ▼]

Poly(ionic liquid)s (PILs) have emerged as a special class of polyelectrolyte materials, featuring tunable solubility, high ionic conductivity, and a broad range of glass transition temperatures. Due to their specific properties emanating from the ionic liquid (IL) units and their intrinsic polymeric nature, PILs find potential applications in various areas, such as analytical chemistry, biotechnology, gas separation, dispersants, solid ionic conductors for energy, catalysis, etc. In recent years, controlled radical polymerization (CRP) techniques have been applied to the synthesis of structurally well-defined PILs, with control attained over molar mass, dispersity, and end-group fidelity. In this poster, we will report on the implementation of cobalt-mediated radical polymerization (CMRP) technique for the precision synthesis of unprecedented PILs (co)polymers. We will discuss how an organocobalt complex can efficiently control the growth of vinyl imidazolium chains and lead to PILs with predicted molar masses and low polydispersities under mild experimental conditions, thus at low temperature and using water as a green polymerization medium. The huge potential of this system will be highlighted by describing the one-pot synthesis of all vinyl imidazolium-based block copolymers in aqueous media. This CMRP is unique for providing well-defined vinyl imidazolium based-copolymers for advanced PILs applications. [less ▲]

Detailed reference viewed: 76 (10 ULg)