References of "Jérôme, Christine"
     in
Bookmark and Share    
See detailPAI Annual Meeting
Ouhib, Farid ULg; Aqil, Abdelhafid ULg; Dirani, Ali et al

Poster (2016, September 12)

Detailed reference viewed: 9 (1 ULg)
See detailOrganocobalt complexes as source of radicals for the controlled polymerization of unconjugated monomers
Demarteau, Jérémy ULg; Cordella, Daniela ULg; Kermagoret, Anthony et al

Poster (2016, September 12)

Detailed reference viewed: 13 (2 ULg)
See detailPolyphosphoester containing amphiphilic block copolymers as drug nanocarriers
Ergül, Zeynep ULg; Vanslambrouck, Stéphanie; Thiry, Justine ULg et al

Poster (2016, September 12)

The design of drug delivery systems often requires biodegradable and biocompatible materials that allow safe retention and controlled release of the drug. In this respect, supramolecularly self-assembled ... [more ▼]

The design of drug delivery systems often requires biodegradable and biocompatible materials that allow safe retention and controlled release of the drug. In this respect, supramolecularly self-assembled amphiphilic block copolymers into spherical micelles are appropriate carriers for poorly soluble drugs. In that framework, we have designed novel functional poly(ethylene oxide)-b-polyphosphoester amphiphilic block copolymers able to cross-linked under UV and degrade in response to a reduction of the pH from neutral conditions. Therefore, an unsaturated alkene side-chain was introduced on the cyclic phosphate monomer according to a one-step reaction followed by its organocatalyzed polymerization initiated by a poly(ethylene oxide) macroinitiator. After self-assembly into water, the micelles were cross-linked by UV irradiation. Then, these cross-linked micelles have been loaded by doxorubicin, i.e. a drug used in cancer therapy. We observed that the doxorubicin loading increased with the number of double bonds on the polyphosphate block of non-cross-linked micelles. This diblock amphiphilic copolymer bearing pendant unsaturations appears thus particularly promising candidate to build micellar drug delivery systems for intravenous injection. [less ▲]

Detailed reference viewed: 26 (2 ULg)
See detailSynthesis and characterizations of non-isocyanate polyurethane (NIPU) hydrogels
Gennen, Sandro ULg; Grignard, Bruno ULg; Thomassin, Jean-Michel ULg et al

Poster (2016, September 12)

Polyurethane (PU) is on of the most used polymers for the preparation of hydrogels due to its good biocompatibility, biodegradation and excellent mechanical properties. PU hydrogels are found in lot of ... [more ▼]

Polyurethane (PU) is on of the most used polymers for the preparation of hydrogels due to its good biocompatibility, biodegradation and excellent mechanical properties. PU hydrogels are found in lot of applications such as wound dressing, soft contact lenses, drug delivery and scaffolds for tissue engineering. Classicaly, PU is produced by a step-growth polymerization between diols and diisocyanates. However, in order to avoid the use of harmful isocyanates compounds and because of regulations which tend to ban the use of isocyanates, we developed hydrogels based on a non-isocyanate polyurethane (NIPU) chemistry by valorizing CO2-sourced cyclic carbonates and amines. Precisely, NIPU hydrogels were prepared by a solvent-free copolymerization between bifunctional hydrophilic polyethylene glycol cyclic carbonates and diamines in presence of a triamine as a crosslinker, followed by a water swelling of the obtained cross-linked gel. Parameters such as the cross-linking ratio and diamine’s nature were optimized. Different clay contents (cloiste 30B) as nanofiller were dispersed in the ideal cyclic carbonate/diamine/triamine formulation prior polymerization in order to reinforce the compression properties of NIPU hydrogels. Finaly, we were able to prepare NIPU hydrogels with water content up to 80 % and good compression properties using low clay content. [less ▲]

Detailed reference viewed: 64 (4 ULg)
Full Text
Peer Reviewed
See detailMacro- and near-mesoporous monoliths by medium internal phase emulsion polymerization: a systematic study
Mathieu, Kevin ULg; Jérôme, Christine ULg; Debuigne, Antoine ULg

in Polymer (2016), 99

The synthesis of a series of poly(ethylene oxide)-b-polystyrene copolymers with different block lengths was performed by radical addition fragmentation chain transfer. These amphiphilic copolymers were ... [more ▼]

The synthesis of a series of poly(ethylene oxide)-b-polystyrene copolymers with different block lengths was performed by radical addition fragmentation chain transfer. These amphiphilic copolymers were tested as stabilizers for water-in-oil medium internal phase emulsion (MIPE) templating polymerization and the formation of polyMIPEs with controlled morphology. Aside from the structure of the emulsion stabilizer, several parameters susceptible to influence the size of the cavities and the interconnectivity of the porous monoliths were probed including the choice of the comonomers, treatment of the emulsion by ultrasound, the use of controlled radical polymerization method for the network formation as well as interfacial initiation. Interconnected cellular monoliths were produced. The polymerization of the ultrasonicated water-in-ethylhexylacrylate/divinylbenzene MIPE notably led to near-mesoporous open-cell material. Mechanical properties and specific surface areas of the polyMIPEs were also investigated and discussed. [less ▲]

Detailed reference viewed: 24 (10 ULg)
See detailValorization of CO2 for the preparation of advanced materials
Gennen, Sandro ULg; Grignard, Bruno ULg; Thomassin, Jean-Michel ULg et al

Conference (2016, July 07)

Detailed reference viewed: 12 (2 ULg)