References of "Jérôme, Christine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSmall Angle X-ray Scattering Insights into the Architecture-Dependent Emulsifying Properties of Amphiphilic Copolymers in Supercritical Carbon Dioxide
Alaimo, David ULg; Hermida Merino, Daniel; Grignard, Bruno ULg et al

in Journal of Physical Chemistry B (in press)

The supramolecular assembly of a series of copolymers combining a PEO-rich hydrophilic and fluorinated CO2-philic sequences is analysed by synchrotron small-angle xray scattering (SAXS) in supercritical ... [more ▼]

The supramolecular assembly of a series of copolymers combining a PEO-rich hydrophilic and fluorinated CO2-philic sequences is analysed by synchrotron small-angle xray scattering (SAXS) in supercritical CO2, as well as in water/CO2 emulsions. These copolymers were designed to have the same molecular weight and composition, and to differ only by their macromolecular architecture. The investigated copolymers have random, block, and palm-tree architectures. Besides, thermo-responsive copolymer is also analysed, having a hydrophilic sequence becoming water-insoluble around 41 °C, i.e. just above the critical point of CO2. At the length scale investigated by SAXS, only the random copolymer appears to self-assemble in pure CO2, in the form of a disordered microgel-like network. The random, block and thermo-responsive copolymers are all able to stabilize water/CO2 emulsions but not the copolymer with the palm-tree architecture, pointing at the importance of macromolecular architecture for the emulsifying properties. A modelling of the SAXS data shows that the block and the thermo-responsive copolymers form spherical micelle-like structures containing about 70 % water and 30 % polymer. [less ▲]

Detailed reference viewed: 17 (6 ULg)
Full Text
Peer Reviewed
See detailIn situ investigation of scCO2 assisted impregnation of drug into polymer by high pressure FTIR micro-spectroscopy
Champeau, Mathilde ULg; Thomassin, Jean-Michel ULg; Jérôme, Christine ULg et al

in Analyst (in press)

An original experimental set-up combining a FTIR microscope with a high pressure cell has been built in order to analyze in-situ the impregnation of solute into microscopic polymer samples, such as fibers ... [more ▼]

An original experimental set-up combining a FTIR microscope with a high pressure cell has been built in order to analyze in-situ the impregnation of solute into microscopic polymer samples, such as fibers or films, subjected to supercritical CO2. Thanks to this experimental set-up, key factors governing the impregnation process can be simultaneously followed such as the swelling of the polymeric matrix, the CO2 sorption, the kinetic of impregnation and the drug loading into the matrix. Moreover, the solute/polymer interactions and the speciation of the solute can be analyzed. We have monitored in situ the impregnation of aspirin and ketoprofen into PEO (Polyethylene Oxide) platelets at T=40°C and P=5; 10 and 15 MPa. The kinetic of impregnation of aspirin was quicker than the one of ketoprofen and the final drug loading was also higher in case of aspirin. Whereas the CO2 sorption and the PEO swelling remain constant when PEO is just subjected to CO2 under isobaric conditions, we noticed that both parameters can increase while the drug impregnates PEO. Coupling these results with DSC measurements, we underlined the plasticizing effect of the drug that also leads to decrease the crystallinity of PEO in situ thus favoring the sorption of CO2 molecules into the matrix and the swelling of the matrix. The plasticizing effect increases with the drug loading. Finally, the speciation of drug was investigated considering the shift of the carboxyl bands of the drugs. Both drugs were found to be mainly homogeneously dispersed into PEO. [less ▲]

Detailed reference viewed: 18 (7 ULg)
Full Text
Peer Reviewed
See detailIn situ bidentate to tetradentate ligand exchange reaction in cobalt-mediated radical polymerization
Kermagoret, Anthony ULg; Jérôme, Christine ULg; Detrembleur, Christophe ULg et al

in European Polymer Journal (in press)

Organometallic-mediated radical polymerization (OMRP) has seen a significant growth in the last years notably due to the development of new metal complexes, especially cobalt derivatives. Despite of this ... [more ▼]

Organometallic-mediated radical polymerization (OMRP) has seen a significant growth in the last years notably due to the development of new metal complexes, especially cobalt derivatives. Despite of this, none of the reported complexes offers optimal control for monomers with very different reactivity, which somewhat limits the synthesis of copolymers. In order to expand the scope of cobalt-mediated radical polymerization (CMRP), we investigated an in situ ligand exchange reaction for modulating the properties of the cobalt complex at the polymer chain-end and adjusting the C-Co bond strength involved in the control process. With the aim of improving the synthesis of poly(vinyl acetate)-b-poly(n-butyl acrylate) copolymers, bidentate acetylacetonate ligands, which impart high level of control to the polymerization of vinyl acetate (VAc), were replaced in situ at the PVAc-cobalt chain-end by tetradentate Salen type ligands that are more suited to acrylates. [less ▲]

Detailed reference viewed: 25 (6 ULg)
Full Text
Peer Reviewed
See detailDevelopment of functionalized nanoparticles for vaccine delivery to dendritic cells: a mechanistic approach
Silva, Joana M.; Vandermeulen, Gaëlle; Oliveira, Vanessa G. et al

in Nanomedicine (in press)

Aim: Produce biodegradable nanoparticles to target antigen-presenting cells and evaluate their potential to be used as a vaccine delivery system. Materials & methods: Untargeted PEGylated PLGA-based ... [more ▼]

Aim: Produce biodegradable nanoparticles to target antigen-presenting cells and evaluate their potential to be used as a vaccine delivery system. Materials & methods: Untargeted PEGylated PLGA-based nanoparticles and mannose-grafted nanoparticles were formulated and physicochemically characterized. Immortalized and primary antigen-presenting cells were used to study nanoparticle internalization patterns. The endocytic pathways and intracellular trafficking followed by nanoparticles were also investigated. Results & discussion: Nanoparticles displayed mannose residues available for binding at the nanoparticle surface. Different nanoparticle internalization patterns by immortalized and primary antigen presenting cells were verified. Macropinocytosis, clathrin-mediated endocytosis, caveolin- and lipid raft-dependent endocytosis are involved in nanoparticles internalization. Nanoparticles demonstrate both endo-lysosomal and cytosolic localizations and a tendency to accumulate nearby the endoplasmic reticulum. Conclusion & future perspective: The developed nanoparticles might drive antigens to be presented through MHC class I and II molecules to both CD8+ and CD4+ T cells, favoring a complete and coordinated immune response. [less ▲]

Detailed reference viewed: 110 (9 ULg)
Full Text
Peer Reviewed
See detailDirect route to well-defined poly(ionic liquid)s by controlled radical polymerization in water
Cordella, Daniela ULg; Kermagoret, Anthony ULg; Debuigne, Antoine ULg et al

in ACS Macro Letters (2014), 3

The precision synthesis of poly(ionic liquid)s (PILs) in water is achieved for the first time by the cobalt-mediated radical polymerization (CMRP) of N-vinyl-3-alkylimidazolium-type monomers following two ... [more ▼]

The precision synthesis of poly(ionic liquid)s (PILs) in water is achieved for the first time by the cobalt-mediated radical polymerization (CMRP) of N-vinyl-3-alkylimidazolium-type monomers following two distinct protocols. The first involves the CMRP of various 1-vinyl-3-alkylimidazolium bromides conducted in water in the presence of an alkyl–cobalt(III) complex acting as a monocomponent initiator and mediating agent. Excellent control over molar mass and dispersity is achieved at 30 °C. Polymerizations are complete in a few hours, and PIL chain-end fidelity is demonstrated up to high monomer conversions. The second route uses the commercially available bis(acetylacetonato)cobalt(II) (Co(acac)2) in conjunction with a simple hydroperoxide initiator (tert-butyl hydroperoxide) at 30, 40, and 50 °C in water, facilitating the scaling-up of the technology. Both routes prove robust and straightforward, opening new perspectives onto the tailored synthesis of PILs under mild experimental conditions in water. [less ▲]

Detailed reference viewed: 18 (7 ULg)
Full Text
Peer Reviewed
See detailNanocomposites based on MWCNT and polystyrene, styrene-acrylonitrile copolymer, or polymethylmethacrylate, obtained by miniemulsion polymerization
Donescu, Dan; Corobea, Mihai Cosmin; Petcu, Cristian et al

in Journal of Applied Polymer Science (2014), 131(23), 411481-10

Free radical miniemulsion polymerization of styrene (St), St/acrylonitrile 3 : 1 mixture or methylmethacrylate in the presence of multiwalled carbon nanotubes (MWCNT) was proven as a convenient way to ... [more ▼]

Free radical miniemulsion polymerization of styrene (St), St/acrylonitrile 3 : 1 mixture or methylmethacrylate in the presence of multiwalled carbon nanotubes (MWCNT) was proven as a convenient way to obtain homogenous hybrids with perspectives in associated applications like foams specialties materials. Miniemulsion polymerization was viable up to 2% wt. MWCNT to monomer, without agglomerations. The grafting on MWCNT during the polymerization occurs without the need for supplementary functionalization and the polymer grafted nanotubes showed stable dispersions in the polymer solvent. Monomer polarity affected the grafting ability during the polymerization process. The nanocomposites obtained after purification and drying were used in foaming process. MWCNT presence in the related nanocomposites decreased the pore sizes in foam-like materials (for all three different matrices). At 1 wt % MWCNT content, low density (< 0.3 g/cm3), low pore size (< 10 μm) and high cell density (>109 cell/cm3) were achieved. [less ▲]

Detailed reference viewed: 9 (2 ULg)
Full Text
Peer Reviewed
See detailPolysaccharide-coated PCL nanofibers for wound dressing applications
Croisier, Florence ULg; Atanasova, Ganka; Poumay, Yves et al

in Advanced Healthcare Materials (2014), 3(12), 2032-2039

Polysaccharide-based nanofibers with amultilayered structure are prepared by combining electrospinning (ESP) and layer-by-layer (LBL) deposition techniques. Charged nanofibers are firstly prepared by ... [more ▼]

Polysaccharide-based nanofibers with amultilayered structure are prepared by combining electrospinning (ESP) and layer-by-layer (LBL) deposition techniques. Charged nanofibers are firstly prepared by electrospinning poly(ε-caprolactone) (PCL) with a block-copolymer bearing carboxylic acid functions. After deprotonation of the acid groups, the layer-by-layer deposition of polyelectrolyte polysaccharides, notably chitosan and hyaluronic acid, is used to coat the electrospun fibers. A multilayered structure is achieved by alternating the deposition of the positively charged chitosan with the deposition of a negatively charged polyelectrolyte. The construction of this multi-layered structure is followed by Zeta potential measurements, and confirmed by observation of hollow nanofibers resulting from the dissolution of the PCL core in a selective solvent. These novel polysaccharide-coated PCL fiber mats remarkably combine the mechanical resistance typical of the core material (PCL) – particularly in the hydrated state –, with the surface properties of chitosan. The control of the nanofiber structure offered by the electrospinning technology, makes the developed process very promising to precisely design biomaterials for tissue engineering. Preliminary cell culture tests corroborate the potential use of such system in wound healing applications. [less ▲]

Detailed reference viewed: 29 (7 ULg)
Full Text
Peer Reviewed
See detailPoly( N-vinylcaprolactam): A thermoresponsive macromolecule with promising future in biomedical field
Liu, Ji; Debuigne, Antoine ULg; Detrembleur, Christophe ULg et al

in Advanced Healthcare Materials (2014), 3(12), 1941-1968

Poly( N -vinylcaprolactam) (PNVCL) is a thermoresponsive and biocompatible polymer that raises an increasing interest in the biomedical area, especially in drug delivery systems (DDS) that include ... [more ▼]

Poly( N -vinylcaprolactam) (PNVCL) is a thermoresponsive and biocompatible polymer that raises an increasing interest in the biomedical area, especially in drug delivery systems (DDS) that include micelles, hydrogels, and hybrid particles. The thermoresponsiveness of PNVCL, used alone or in combination with other stimuli- responsive polymers or particles (pH, magnetic fi eld, or chemicals), is often key in the loading and/or release process in these DDS. The renewed focus on this polymer, which is known for decades, is to a large extent due to recent progress in synthetic strategies. Especially, the advent of efficient controlled radical polymerization (CRP) methods for NVCL monomer gives now access to unprecedented well-defi ned NVCL-based copolymers with unique properties. This Review article addresses up-to-date synthetic aspects, biological features, and biomedical applications of the latest NVCL-containing systems. [less ▲]

Detailed reference viewed: 33 (4 ULg)
Full Text
Peer Reviewed
See detailInput of supercritical carbon dioxide to polymer synthesis: an overview
Boyère, Cédric; Jérôme, Christine ULg; Debuigne, Antoine ULg

in European Polymer Journal (2014), 61

The ongoing search for environmentally friendlier alternative to the organic solvents used in chemical processes has led to the development of technologies based on supercritical carbon dioxide (scCO2 ... [more ▼]

The ongoing search for environmentally friendlier alternative to the organic solvents used in chemical processes has led to the development of technologies based on supercritical carbon dioxide (scCO2), which is non-flammable, non-toxic and relatively inert fluid. Polymer chemistry does not escape this trend and last achievements in the field of polymer synthesis in scCO2 are reviewed here. Without claiming to be exhaustive, we go through and discuss the benefits of the main polymerization processes in scCO2 including homogeneous, precipitation, dispersion, suspension and emulsion systems. A particular attention is drawn to water/carbon dioxide emulsion polymerization and to the suited surface active agents. This review also underlines that heterogeneous polymerization based on CO2 is more than a strategy for reducing the ecological footprint of the polymer production but it allows structuring the polymer materials into particles or highly interconnected macroporous networks. [less ▲]

Detailed reference viewed: 24 (6 ULg)
Full Text
See detailRole of the polyQ length and non-polyQ regions during the aggregation process into amyloid fibrils of model polyQ proteins
Huynen, Céline ULg; Willet, Nicolas ULg; Buell, Alexander K et al

Poster (2014, November 26)

Nine neurodegenerative disorders, referred to as polyglutamine diseases and including Huntington’s disease, are associated with the abnormal expansion of a polyglutamine tract inside nine unrelated ... [more ▼]

Nine neurodegenerative disorders, referred to as polyglutamine diseases and including Huntington’s disease, are associated with the abnormal expansion of a polyglutamine tract inside nine unrelated proteins. This polyQ expansion is thought to be the major determinant in the development of neurotoxicity, triggering protein aggregation into amyloid fibrils. A large body of evidence however suggests that non-polyQ regions modulate the aggregation process triggered by polyQ expansions. The interplay between the polyQ tract and non-polyQ regions is complex and still not fully understood. In order to better understand it, we previously designed and characterized model polyQ proteins made of the beta-lactamase BlaP with 23, 30, 55 and 79Q inserted at position 197 or 216. Our first results had indicated that our model is relevant to study polyQ aggregation since it recapitulates the aggregation properties of polyQ disease-associated proteins: there is a Q-threshold for the spontaneous formation of amyloid fibrils in solution, and above the threshold, the longer the polyQ, the faster the aggregation. Moreover, the structure of BlaP and the position of insertion of the polyQ tract influence their aggregation properties in solution. This work aims to better understand, at the molecular level, (i) the precise role of the polyQ length (23, 30, 55, 61, 67, 73 and 79Q), (ii) the conformation of the host protein (native or unfolded BlaP), (iii) the location of the polyQ tract within BlaP (197 or 216), (iv) the flexibility of the polyQ flanking sequences, and (v) the origin of constraints applied by BlaP to the inserted polyQ tract (at its N- or C-terminal end) on the structural, thermodynamic and aggregation properties of BlaP-polyQ chimeras, using a wide range of biophysical techniques (e.g., spectroscopy methods, quartz crystal microbalance, atomic force microscopy and dynamic light scattering). The effect on the aggregation properties will be determined on the spontaneous aggregation into amyloid fibrils in solution, and on the nucleation and on the elongation steps of amyloid fibril formation. For this purpose, new chimeras containing 61, 67 and 73Q at position 197, or 55Q inserted at position 197 in between two different protease’s cleavage sites, that are relatively flexible, will be moreover created. Our results first demonstrate that the spontaneous aggregation into amyloid fibrils in solution is correlated to the polyQ length with an exponential growth function, and that the elongation rate is linearly correlated to the polyQ length, independently of the protein context (i.e., conformation of BlaP, and/or location of the polyQ tract, and/or polyQ peptides inserted or not within BlaP). However, the location of the polyQ tract inside BlaP, and/or its conformational state, and/or the flexibility of polyQ flanking sequences, and/or the origin of constraints applied to the polyQ tract drastically influence the ability of a polyQ tract to trigger the nucleation and/or the elongation step of amyloid fibrils (variation in the Q-threshold and in the absolute rate of both steps). Altogether, our results suggest that non-polyQ regions constitute an additional potential therapeutic target, more specific than drugs targeting the polyQ sequence, to interfere with the nucleation and/or the elongation of amyloid fibrils, associated to neurotoxicity. A possible drug could be constituted by a ligand specific to non-polyQ regions of disease-associated proteins, which further increases the constraints applied to the polyQ expansion to prevent the disease onset and/or progression. [less ▲]

Detailed reference viewed: 9 (3 ULg)
Full Text
Peer Reviewed
See detailDouble thermoresponsive di- and triblock copolymers based on N-vinylcaprolactam and N-vinylpyrrolidone: synthesis and comparative study of solution behaviour
Kermagoret, Anthony ULg; Mathieu, Kevin ULg; Thomassin, Jean-Michel ULg et al

in Polymer Chemistry (2014), 5(22), 6534-6544

Poly(N-vinylcaprolactam) (PNVCL) and poly(N-vinylpyrrolidone) (PNVP) are water soluble polymers of interest especially in the biomedical field. Moreover, PNVCL is characterized by a lower critical ... [more ▼]

Poly(N-vinylcaprolactam) (PNVCL) and poly(N-vinylpyrrolidone) (PNVP) are water soluble polymers of interest especially in the biomedical field. Moreover, PNVCL is characterized by a lower critical solution temperature close to 36 °C in water, which makes it useful for the design of thermoresponsive systems. In this context, we used the cobalt-mediated radical polymerization (CMRP) and reaction coupling (CMRC) for synthesizing a series of well-defined NVCL and NVP-based copolymers, including statistical copolymers as well as double thermoresponsive diblocks and triblocks. Dynamic light scattering and turbidimetry analyses highlighted the crucial impact of the copolymer composition and architecture on the cloud point temperature (TCP) of each segment and also their influence on the multistep assembly behaviour of block copolymers. Addition of NaCl enabled us to adjust the inter-TCP range of the di- and triblock in which selective precipitation of one block and self-assembly of the copolymer were favoured. Overall, data presented here provide a basis for the synthesis of a broad range of NVCL/NVP based copolymer architectures with a tunable thermal response in water. [less ▲]

Detailed reference viewed: 12 (1 ULg)
See detailSmart cross-linked polymer micelles for drug delivery
Riva, Raphaël ULg; Vanslambrouck, Stéphanie ULg; Ergül, Zeynep ULg et al

Conference (2014, November 11)

Nowadays, polymer crosslinking is widely used in industry to improve or to impart new properties to existing polymer material. In the pharmaceutical field, polymer crosslinking is of great interest for ... [more ▼]

Nowadays, polymer crosslinking is widely used in industry to improve or to impart new properties to existing polymer material. In the pharmaceutical field, polymer crosslinking is of great interest for the elaboration of drug delivery devices, mostly hydrogels. Nevertheless, crosslinking is also very useful in nanovectorization of active principle. Indeed, each day, new drugs are synthesized and available on the market but in too many cases, the high hydrophobicity of some drugs makes them useless because of the absence of an appropriated administration method. The encapsulation of the drug into a nanocarrier, typically in the hydrophobic core of a polymer micelle, allows a significant increase of the drugs concentration in water in addition to the protection of the active principle against degradation. However, polymer micelles suffer of the main drawback to not be stable, leading to a premature release of the drug, when the concentration falls down the critical micellar concentration (CMC), which it is rapidly observed after intravenous injection. In order to get rid of the CMC, crosslinking of the micelle core is the most proposed strategy. Nevertheless, the crosslinking of the micelle core may have a non-negligible effect on the drug loading but mainly on the drug release due to the sequestration of the drug in the network. Over the last years, our lab investigated several strategies for the crosslinking of the micelle core made of amphiphilic and biocompatible block copolymers generally by UV radiation in order to fulfill the increasingly stringent requirements of biomedical applications. These strategies are very helpful to prepare injectable nanosized cross-linked particles loaded with an active particle. For some systems, the effect of the crosslinking rate on the drug loading and the drug release was evaluated using a model drug. As the crosslinking may interfere with the drug release after internalization of the carrier into the cell, a reversible crosslinking of the micelle core was proposed. Typically, the introduction of disulfide bond as inter-chain links allowed to delay the drug release by diffusion whereas into the cell, the reduction of the disulfide bridges into corresponding thiol led to the fast disassemble of the micelle and the specific release of the drug into cytoplasm. [less ▲]

Detailed reference viewed: 85 (2 ULg)
Full Text
See detailRole of non-polyQ regions on the aggregation process by polyQ proteins into amyloid fibrils
Huynen, Céline ULg; Willet, Nicolas ULg; Buell, Alexander K et al

Poster (2014, October 18)

Nine neurodegenerative disorders, referred to as polyglutamine diseases and including Huntington’s disease, are associated with the abnormal expansion of a polyglutamine tract inside nine unrelated ... [more ▼]

Nine neurodegenerative disorders, referred to as polyglutamine diseases and including Huntington’s disease, are associated with the abnormal expansion of a polyglutamine tract inside nine unrelated proteins. This polyQ expansion is thought to be the major determinant in the development of neurotoxicity, triggering protein aggregation into amyloid fibrils. A large body of evidence however indicates that non-polyQ regions modulate the aggregation process triggered by polyQ expansions. The interplay between the polyQ tract and non-polyQ regions is complex and still not fully understood. In order to better understand it, we previously designed and characterized model polyQ proteins made of the beta-lactamase BlaP and a 23, 30, 55 or 79Q tract inserted in position 197 or 216. These chimeras recapitulate the aggregation properties of polyQ disease-associated proteins: there is a Q-threshold for the formation of amyloid fibrils, and above the threshold, the longer the polyQ, the faster the aggregation. Moreover, the structure of BlaP (native or unfolded) and the position of insertion of the polyQ tract (197 versus 216) influence their aggregation properties. In this work, (i) we discuss the role of the conformation of the host protein, BlaP, and of the location of the polyQ within BlaP on the different phases of amyloid fibril formation, the nucleation and elongation steps, using mainly quartz crystal microbalance (QCM), atomic force microscopy (AFM). Our results highlight a linear dependence of the polyQ length on the elongation rate whatever the insertion site and the conformation of BlaP. These two parameters however drastically influence the ability of a polyQ tract to trigger the nucleation and the elongation steps of amyloid fibril formation. (ii) Finally, we investigate the precise aggregation threshold and the modulating role of the N- and C-terminal polyQ flanking sequences in position 197 of BlaP by creating and characterizing new chimeras containing intermediate length polyQ tracts in position 197, or polyQ tracts inserted between two cleavage sites in position 197, respectively. We observe that the propensity to trigger the full process of amyloid fibril formation and its rate seems to be largely dependent on the polyQ length and on the polyQ flanking sequences. Altogether our results contribute to identify the important species and elements (polyQ or non-polyQ regions, monomers, oligomers or fibrils) during the aggregation process into amyloid fibrils to interfere with the latter associated with neurotoxicity. [less ▲]

Detailed reference viewed: 3 (1 ULg)
Full Text
Peer Reviewed
See detailA facile and fast electrochemical route to produce functional few-layer graphene sheets for lithium battery anode application
Ouhib, Farid ULg; Aqil, Abdelhafid ULg; Thomassin, Jean-Michel ULg et al

in Journal of Materials Chemistry A (2014), 2(37), 15298-15302

A simple approach for the production of polymer functionalized graphene nanosheets is reported. The resulting polyacrylonitrile chemisorbed on graphene sheets is made of 1 to 2 layers, with a large ... [more ▼]

A simple approach for the production of polymer functionalized graphene nanosheets is reported. The resulting polyacrylonitrile chemisorbed on graphene sheets is made of 1 to 2 layers, with a large majority of graphene single-layers. This novel functionalized graphene exhibits good cycling stability as an anode in Li-ion batteries without a conductive additive or binder. [less ▲]

Detailed reference viewed: 17 (3 ULg)
Full Text
See detailTemplating calcium carbonate drug delivery carriers based on polyphosphoester copolymers
Ergül, Zeynep ULg; Debuigne, Antoine ULg; Calvignac, Brice et al

Poster (2014, October)

Detailed reference viewed: 10 (2 ULg)
Full Text
Peer Reviewed
See detailBlock, random and palm-tree amphiphilic fluorinated copolymers: controlled synthesis, surface activity and use as dispersion polymerization stabilizers
Alaimo, David ULg; Beigbeder, Alexandre; Dubois, Philippe et al

in Polymer Chemistry (2014), 5(18), 5273-5282

Detailed reference viewed: 27 (3 ULg)
Full Text
Peer Reviewed
See detailThermo-responsive gold/poly(vinyl alcohol)-b-poly(N-vinylcaprolactam) core–corona nanoparticles as a drug delivery system
Liu, Ji ULg; Detrembleur, Christophe ULg; Hurtgen, Marie et al

in Polymer Chemistry (2014), 5(18), 5289-5299

Core–corona gold/poly(vinyl alcohol)-b-poly(N-vinylcaprolactam) nanoparticles (gold@PVOH-b-PNVCL NPs) were fabricated via an in situ method, where a gold salt was reduced within the macromolecular aqueous ... [more ▼]

Core–corona gold/poly(vinyl alcohol)-b-poly(N-vinylcaprolactam) nanoparticles (gold@PVOH-b-PNVCL NPs) were fabricated via an in situ method, where a gold salt was reduced within the macromolecular aqueous solution. Arrangement of macromolecular chains on the surface of gold cores was studied by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy and infrared spectroscopy. The responsiveness to temperature and the preserved colloidal stability of the gold@PVOH-b-PNVCL NPs above the lower critical solution temperature (LCST) were confirmed by dynamic light scattering and turbidity measurements. The drug loading capacity (DLC of ca. 1.3–2.8 wt%) of the gold@PVOH-b-PNVCL NPs as a drug delivery system (DDS) was tested with Nadolol®, a hydrophilic drug, and the release behaviours were studied at several temperatures. PVOH-b-PNVCL copolymers with an LCST of a few degrees above the biological temperature (37 °C), for example, PVOH180-b-PNVCL110 (LCST of 41 °C), are preferential, due to the slower release at 37 °C, but a faster release at temperatures that are a few degrees higher. The cytocompatibility of the gold@PVOH-b-PNVCL NPs against mouse fibroblastic L929 cells was evaluated via the MTS assay. Cellular uptake within MEL-5 human melanoma cells was studied by confocal laser scanning microscopy, fluorescence-activated cell sorting and TEM techniques and it showed that gold@PVOH-b-PNVCL NPs preferably accumulated within the cellular cytoplasm, with an incubation concentration and period-dependent uptake process. All these results corroborated a general utility of these thermo-responsive gold@PVOH-b-PNVCL NPs for drug delivery and controlled drug release. [less ▲]

Detailed reference viewed: 28 (1 ULg)
See detailSynthesis of well-defined ethylene-based copolymers: on track using organometallic-mediated radical polymerization
Debuigne, Antoine ULg; Kermagoret, Anthony ULg; Jérôme, Christine ULg et al

Conference (2014, September 19)

Organometallic-Mediated Radical Polymerization (OMRP)1 has received renewed interest in recent years since proving its efficiency for non-activated monomers like vinylacetate (VAc), N-vinylamides, etc ... [more ▼]

Organometallic-Mediated Radical Polymerization (OMRP)1 has received renewed interest in recent years since proving its efficiency for non-activated monomers like vinylacetate (VAc), N-vinylamides, etc. Nevertheless, important mechanistic questions and challenges remained. A major goal in the field of controlled radical polymerization today consists in the design of well-defined ethylene containing (co)polymers. A recent mechanistic study on the impact of head-to-head addition on the course of the VAc polymerization by OMRP provided a strong incentive to evaluate the copolymerization of VAc with ethylene by this technique. Indeed, the latter revealed that dormant chains resulting from inverted head-to-head additions in the VAc polymerization, which mimics a terminal ethylene-cobalt moiety, reactivates at a similar rate compared to the ones resulting from the regular head-to-tail addition. As a result, well-defined statistical and block-like ethylene-based copolymers were prepared. These achievements represent an important step towards a versatile synthetic platform for polyolefine-based materials. [less ▲]

Detailed reference viewed: 20 (1 ULg)
Full Text
Peer Reviewed
See detailPolymer topology revealed by ion mobility coupled with mass spectrometry
Morsa, Denis ULg; Defize, Thomas ULg; Dehareng, Dominique ULg et al

in Analytical Chemistry (2014), 86(19), 96939700

Hyperbranched and star shaped polymers have raised tremendous interests because of their unusual structural and photochemical properties which provide them potent applications in various domains, namely ... [more ▼]

Hyperbranched and star shaped polymers have raised tremendous interests because of their unusual structural and photochemical properties which provide them potent applications in various domains, namely in the biomedical field. In this context, the development of adequate tools aiming to probe particular three-dimensional features of such polymers is of crucial importance. In this present work, ion mobility coupled with mass spectrometry was used to experimentally derive structural information related to cationized linear and star-shaped poly-ε-caprolactones as a function of their charge state and chain length. Two major conformations were observed and identified using theoretical modeling: (1) near spherical conformations whose size is invariant with the polymer topology for long and lightly charged chains and (2) elongated conformations whose size varies with the polymer topology for short and highly charged chains. These conformations were further confirmed by collisional activation experiments based on the ejection thresholds of the coordinated cations that vary according to the elongation amplitude of the polymer chains. Finally, a comparison between solution and gas-phase conformations highlights a compaction of the structure with a loss of specific chain arrangements during the ionization and desolvation steps of the electrospray process, fueling the long-time debated question related to the preservation of the analyte structure during the transfer into the mass spectrometer. [less ▲]

Detailed reference viewed: 38 (13 ULg)