References of "Jérôme, Christine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPolyphosphoesters: new trends in synthesis and drug delivery applications
Ergül, Zeynep ULg; Jérôme, Christine ULg

in Macromolecular Bioscience (in press)

Polymers with repeating phosphoester linkages in the backbone are biodegradable materials that emerge as a promising class of novel biomaterials, especially in the field of drug delivery systems. In ... [more ▼]

Polymers with repeating phosphoester linkages in the backbone are biodegradable materials that emerge as a promising class of novel biomaterials, especially in the field of drug delivery systems. In contrast to aliphatic polyesters, the pentavalency of the phosphorus atom offers a large diversity of structures and as a consequence a wide range of properties for these mate- rials. In this paper, it is focused on the synthesis of well-defined polyphosphoesters (PPEs) by organocatalyzed ring-opening polymerization, improving the functionalities by combination with click reactions, degrada- tion of functional PPEs and their cytotoxicity, and inputs for applications in drug delivery. [less ▲]

Detailed reference viewed: 9 (3 ULg)
Full Text
Peer Reviewed
See detailProtein encapsulation and release from PEO-b-polyphosphoester templated calcium carbonate particles
Ergül, Zeynep ULg; Cordonnier, Thomas; Debuigne, Antoine ULg et al

in International Journal of Pharmaceutics (2016), 513

Calcium carbonate particles are promising candidates as proteins carriers for their controlled delivery in the body. The present paper aims at investigating the protein encapsulation by in situ ... [more ▼]

Calcium carbonate particles are promising candidates as proteins carriers for their controlled delivery in the body. The present paper aims at investigating the protein encapsulation by in situ precipitation of calcium carbonate particles prepared by a process based on supercritical CO2 and using a new type of degradable well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and polyphosphoester blocks acting as templating agent for the calcium carbonate. For this study, lysozyme was chosen as a model for therapeutic protein for its availability and ease of detection. It was found that by this green process, loading into the CaCO3 microparticles with a diameter about 2 mm can be obtained as determined by scanning electron microscopy. A protein loading up to 6.5% active lysozyme was measured by a specific bioassay (Micrococcus lysodeikticus). By encapsulating fluorescent-labelled lysozyme (lysozyme-FITC), the confocal microscopy images confirmed its encapsulation and suggested a core–shell distribution of lysozyme into CaCO3, leading to a release profile reaching a steady state at 59% of release after 90 min. [less ▲]

Detailed reference viewed: 11 (3 ULg)
See detailOrganocatalytic ring-opening polymerization towards polyphosphoesters
Clément, Benoit; Vanslambrouck, Stépanie; Carion, Stéphan ULg et al

Conference (2016, September 13)

Hydrolytically degradable and biocompatible aliphatic polyesters are widely applied for biomedical applications as implants, scaffolds for tissue engineering and, finally, as nanocarriers for drug ... [more ▼]

Hydrolytically degradable and biocompatible aliphatic polyesters are widely applied for biomedical applications as implants, scaffolds for tissue engineering and, finally, as nanocarriers for drug delivery. Aliphatic phophoesters, known since the pioneering work of S. Penczek in the 70’s, exhibit the same properties of hydrolytic degradability and biocompatibility and are thus more and more studied for biomedical applications as well. In the field of materials, anti-fire properties opens up new perspectives. The difference between polyesters and polyphosphoesters in terms of synthesis and properties will be highlighted. Polyphosphosphoesters are synthesized by step-growth and chain growth polymerization. When these polyphosphoesters are synthesized by ring-opening polymerization of cyclic phosphoesters, organocatalysts turned out to be very efficient compared to coodination processes. The last part of the talk will deal with te implementation of ROP of cyclic phosphates towards a series of amphiphilic PEO-block-polyphosphate copolymers of tailored hydrophobicity depending on the length of the lateral alkyl group. These polymers are able to self assemble into nanoparticles by direct dissolution in water, thus in the absernce of any organic solvent. The so-obtained micelles were studied by a set of techniques (Pyrene Fluorescence, Dynamic Light Scattering, Tensiometry). Finally, the influence of the hydrophobicity of the polyphosphate block of the micelle on the encapsulation and the release of a model drug was investigated. [less ▲]

Detailed reference viewed: 14 (2 ULg)
See detailPAI Annual Meeting
Ouhib, Farid ULg; Aqil, Abdelhafid ULg; Dirani, Ali et al

Poster (2016, September 12)

Detailed reference viewed: 7 (1 ULg)
See detailOrganocobalt complexes as source of radicals for the controlled polymerization of unconjugated monomers
Demarteau, Jérémy ULg; Cordella, Daniela ULg; Kermagoret, Anthony et al

Poster (2016, September 12)

Detailed reference viewed: 11 (2 ULg)
See detailPolyphosphoester containing amphiphilic block copolymers as drug nanocarriers
Ergül, Zeynep ULg; Vanslambrouck, Stéphanie; Thiry, Justine ULg et al

Poster (2016, September 12)

The design of drug delivery systems often requires biodegradable and biocompatible materials that allow safe retention and controlled release of the drug. In this respect, supramolecularly self-assembled ... [more ▼]

The design of drug delivery systems often requires biodegradable and biocompatible materials that allow safe retention and controlled release of the drug. In this respect, supramolecularly self-assembled amphiphilic block copolymers into spherical micelles are appropriate carriers for poorly soluble drugs. In that framework, we have designed novel functional poly(ethylene oxide)-b-polyphosphoester amphiphilic block copolymers able to cross-linked under UV and degrade in response to a reduction of the pH from neutral conditions. Therefore, an unsaturated alkene side-chain was introduced on the cyclic phosphate monomer according to a one-step reaction followed by its organocatalyzed polymerization initiated by a poly(ethylene oxide) macroinitiator. After self-assembly into water, the micelles were cross-linked by UV irradiation. Then, these cross-linked micelles have been loaded by doxorubicin, i.e. a drug used in cancer therapy. We observed that the doxorubicin loading increased with the number of double bonds on the polyphosphate block of non-cross-linked micelles. This diblock amphiphilic copolymer bearing pendant unsaturations appears thus particularly promising candidate to build micellar drug delivery systems for intravenous injection. [less ▲]

Detailed reference viewed: 14 (2 ULg)
See detailSynthesis and characterizations of non-isocyanate polyurethane (NIPU) hydrogels
Gennen, Sandro ULg; Grignard, Bruno ULg; Thomassin, Jean-Michel ULg et al

Poster (2016, September 12)

Polyurethane (PU) is on of the most used polymers for the preparation of hydrogels due to its good biocompatibility, biodegradation and excellent mechanical properties. PU hydrogels are found in lot of ... [more ▼]

Polyurethane (PU) is on of the most used polymers for the preparation of hydrogels due to its good biocompatibility, biodegradation and excellent mechanical properties. PU hydrogels are found in lot of applications such as wound dressing, soft contact lenses, drug delivery and scaffolds for tissue engineering. Classicaly, PU is produced by a step-growth polymerization between diols and diisocyanates. However, in order to avoid the use of harmful isocyanates compounds and because of regulations which tend to ban the use of isocyanates, we developed hydrogels based on a non-isocyanate polyurethane (NIPU) chemistry by valorizing CO2-sourced cyclic carbonates and amines. Precisely, NIPU hydrogels were prepared by a solvent-free copolymerization between bifunctional hydrophilic polyethylene glycol cyclic carbonates and diamines in presence of a triamine as a crosslinker, followed by a water swelling of the obtained cross-linked gel. Parameters such as the cross-linking ratio and diamine’s nature were optimized. Different clay contents (cloiste 30B) as nanofiller were dispersed in the ideal cyclic carbonate/diamine/triamine formulation prior polymerization in order to reinforce the compression properties of NIPU hydrogels. Finaly, we were able to prepare NIPU hydrogels with water content up to 80 % and good compression properties using low clay content. [less ▲]

Detailed reference viewed: 33 (3 ULg)
Full Text
Peer Reviewed
See detailMacro- and near-mesoporous monoliths by medium internal phase emulsion polymerization: a systematic study
Mathieu, Kevin ULg; Jérôme, Christine ULg; Debuigne, Antoine ULg

in Polymer (2016), 99

The synthesis of a series of poly(ethylene oxide)-b-polystyrene copolymers with different block lengths was performed by radical addition fragmentation chain transfer. These amphiphilic copolymers were ... [more ▼]

The synthesis of a series of poly(ethylene oxide)-b-polystyrene copolymers with different block lengths was performed by radical addition fragmentation chain transfer. These amphiphilic copolymers were tested as stabilizers for water-in-oil medium internal phase emulsion (MIPE) templating polymerization and the formation of polyMIPEs with controlled morphology. Aside from the structure of the emulsion stabilizer, several parameters susceptible to influence the size of the cavities and the interconnectivity of the porous monoliths were probed including the choice of the comonomers, treatment of the emulsion by ultrasound, the use of controlled radical polymerization method for the network formation as well as interfacial initiation. Interconnected cellular monoliths were produced. The polymerization of the ultrasonicated water-in-ethylhexylacrylate/divinylbenzene MIPE notably led to near-mesoporous open-cell material. Mechanical properties and specific surface areas of the polyMIPEs were also investigated and discussed. [less ▲]

Detailed reference viewed: 17 (7 ULg)
Full Text
Peer Reviewed
See detailAnionic flow polymerizations toward functional polyphosphoesters in microreactors: Polymerization and UV-modification
Baeten, Evelien; Vanslambrouck, Stéphanie; Jérôme, Christine ULg et al

in European Polymer Journal (2016), 80

The polymerization of cyclic phosphates to poly(phosphoester)s, PPEs, is optimized for chip- based microreactors under continuous flow conditions. The anionic ring-opening polymerization of 2-isobutyoxy-2 ... [more ▼]

The polymerization of cyclic phosphates to poly(phosphoester)s, PPEs, is optimized for chip- based microreactors under continuous flow conditions. The anionic ring-opening polymerization of 2-isobutyoxy-2-oxo-1,3,2-dioxaphospholane (iBP) via the use of two organocatalytic systems allowed to polymerize to nearly quantitative monomer conversion within 10 or 3 minutes, respectively at a reaction temperature of 40 °C. Further, the optimized polymerization protocol was applied to 2-butenoxy-2-oxo-1,3,2-dioxaphospholane (BP) which yields a polymer that carries an alkene functionality per monomer repeating unit. This material can be postmodified in an UV-induced radical thiol-ene reaction, which was also shown to proceed with very high efficiency under UV-flow conditions. Eventually, both reactions were coupled in a two-stage reactor setup, showing that the thermally-activated polymerization can be coupled with high efficiency to the UV-activated post-polymerization modification reaction. The introduced reactor setup can in the future be used to produce and screen a broad variety of functional PPE materials with various functionalities and physical properties. [less ▲]

Detailed reference viewed: 69 (25 ULg)