References of "Jérôme, Christine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTransparent superhydrophobic coatings from amphiphilic-fluorinated block copolymers synthesized by aqueous polymerization-induced self-assembly
Ouhib, Farid ULg; Dirani, Ali; Aqil, Abdelhafid ULg et al

in Polymer Chemistry (in press)

Preparation of transparent and superhydrophobic coatings by co-deposition of an aqueous solution of an amphiphilic fluorinated block copolymer (FBC) with silica particles was developped. Spin- coating of ... [more ▼]

Preparation of transparent and superhydrophobic coatings by co-deposition of an aqueous solution of an amphiphilic fluorinated block copolymer (FBC) with silica particles was developped. Spin- coating of this aqueous solution onto glass followed by an appropriate thermal treatment promotes the self-assembly of the hybrid material with the formation of superhydrophobic, robust and transparent coatings. [less ▲]

Detailed reference viewed: 17 (3 ULg)
Full Text
Peer Reviewed
See detailOne-pot synthesis of double poly(ionic liquid) block copolymers by cobalt-mediated radical polymerization-induced self assembly (CMR-PISA) in water
Cordella, Daniela ULg; Debuigne, Antoine ULg; Jérôme, Christine ULg et al

in Macromolecular Rapid Communications (in press)

Amphiphilic double poly(ionic liquid) (PIL) block copolymers are directly prepared by cobalt- mediated radical polymerization induced self-assembly (CMR-PISA) in water of N-vinyl imida- zolium monomers ... [more ▼]

Amphiphilic double poly(ionic liquid) (PIL) block copolymers are directly prepared by cobalt- mediated radical polymerization induced self-assembly (CMR-PISA) in water of N-vinyl imida- zolium monomers carrying distinct alkyl chains. The cobalt-mediated radical polymerization of N-vinyl-3-ethyl imidazolium bromide (VEtImBr) is first carried out until high conversion in water at 30 °C, using an alkyl bis(acetylacetonate)cobalt(III) adduct as initiator and con- trolling agent. The as-obtained hydrophilic poly(N-vinyl-3- ethyl imidazolium bromide) (PVEtImBr) is then used as a macroinitiator for the CMR-PISA of N-vinyl-3-octyl imidazo- lium bromide (VOcImBr). Self-assembly of the amphiphilic PVEtImBr-b-PVOcImBr block copolymer, i.e., of PIL-b-PIL-type, rapidly takes place in water, forming polymer nanoparticles consisting of a hydrophilic PVEtImBr corona and a hydro- phobic PVOcImBr core. Preliminary investigation into the effect of the size of the hydrophobic block on the dimension of the nanoparticles is also described. [less ▲]

Detailed reference viewed: 52 (16 ULg)
Full Text
Peer Reviewed
See detailAnionic flow polymerizations toward functional polyphosphoesters in microreactors: Polymerization and UV-modification
Baeten, Evelien; Vanslambrouck, Stéphanie; Jérôme, Christine ULg et al

in European Polymer Journal (in press)

The polymerization of cyclic phosphates to poly(phosphoester)s, PPEs, is optimized for chip- based microreactors under continuous flow conditions. The anionic ring-opening polymerization of 2-isobutyoxy-2 ... [more ▼]

The polymerization of cyclic phosphates to poly(phosphoester)s, PPEs, is optimized for chip- based microreactors under continuous flow conditions. The anionic ring-opening polymerization of 2-isobutyoxy-2-oxo-1,3,2-dioxaphospholane (iBP) via the use of two organocatalytic systems allowed to polymerize to nearly quantitative monomer conversion within 10 or 3 minutes, respectively at a reaction temperature of 40 °C. Further, the optimized polymerization protocol was applied to 2-butenoxy-2-oxo-1,3,2-dioxaphospholane (BP) which yields a polymer that carries an alkene functionality per monomer repeating unit. This material can be postmodified in an UV-induced radical thiol-ene reaction, which was also shown to proceed with very high efficiency under UV-flow conditions. Eventually, both reactions were coupled in a two-stage reactor setup, showing that the thermally-activated polymerization can be coupled with high efficiency to the UV-activated post-polymerization modification reaction. The introduced reactor setup can in the future be used to produce and screen a broad variety of functional PPE materials with various functionalities and physical properties. [less ▲]

Detailed reference viewed: 62 (22 ULg)
See detailPolyphosphoesters as a new platform for the design of particulate drug delivery systems
Vanslambrouck, Stéphanie; Ergul Yilmaz, Zeynep; Debuigne, Antoine ULg et al

Conference (2016, June)

Thanks to their biocompatibility and degradability properties, polyphosphates are appealing polymers for biomedical applications. In contrast to aliphatic polyesters, such as poly(ε-caprolactone) and poly ... [more ▼]

Thanks to their biocompatibility and degradability properties, polyphosphates are appealing polymers for biomedical applications. In contrast to aliphatic polyesters, such as poly(ε-caprolactone) and poly(lactide), the pentavalency of the phosphorus atom allows the easy modification of the polyphosphate properties by simply adjusting the nature, the length and the functionality of the polyphosphate pendant groups. Therefore, macromolecular engineering of polyphosphoesters was applied to design well-defined architectures and functionalities adapted to drug nanocarriers. In a first approach, amphiphilic block copolymers are synthesized by organo-catalyzed ring-opening polymerization process for the synthesis of a range of PEO-b-polyphosphate bearing various pendant groups. Post-polymerization thiol-ene click reactions preformed on PEO-b-polyphosphate copolymers was also investigated to improve the hydrophobicity of the polyphosphate. The self-assembly of these PEO-b-polyphosphate copolymers into micelles was investigated, particularly, the effect of the nature of the polyphosphate pendant groups (i) on the micelles characteristics, (ii) on the encapsulation of a poorly soluble drug and (iii) on the drug release profile. The toxicity of the different amphiphilic block copolymers was also evaluated by live/dead cell viability assays. In a second approach, double hydrophilic copolymers based on polyphosphoesters have been used as templating agent for the synthesis of calcium carbonate particles. Indeed, the use of such microparticles is becoming more and more attractive in many fields especially for biomedical applications for which fine tuning of size, morphology and crystalline form of CaCO3 particles is crucial. Although some structuring compounds, like hyaluronic acid, give satisfying results, the control of the particle structure still has to be improved. To this end, we evaluated the CaCO3 structuring capacity of the well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and of a polyphosphoester segment with affinity for calcium like poly(phosphotriester)s bearing pendant carboxylic acids or poly(phosphodiester)s with a negatively charged oxygen atom on each repeating monomer unit. [less ▲]

Detailed reference viewed: 87 (10 ULg)
See detailCatalytic transformation of CO2: from monomers to polymers
Alves, Margot ULg; Grignard, Bruno ULg; Boyaval, Amélie ULg et al

Conference (2016, May 24)

Valorising CO2 as a renewable C1 feedstock for producing added value building blocks is the scope of many academic and industrial researches. Carbon dioxide is a thermodynamically and kinetically stable ... [more ▼]

Valorising CO2 as a renewable C1 feedstock for producing added value building blocks is the scope of many academic and industrial researches. Carbon dioxide is a thermodynamically and kinetically stable molecule that can be converted into five membered cyclic carbonates by coupling with epoxides using organometallic complexes or organocatalysts. To date, the identification and development of highly efficient (organo)catalysts under mild experimental conditions still remains challenging. In particular, the synthesis of six membered cyclic carbonates by the CO2/oxetane coupling using such organocatalysts has never been reported to our knowledge. In this context, we developed a new highly efficient bicomponent homogeneous organocatalyst composed of an ammonium salt as the catalyst and fluorinated single or double hydrogen bond donor activators (HBD). First, the efficiency of this new organocatalyst for the fast and selective CO2/epoxide coupling was investigated through detailed kinetic studies by IR spectroscopy under pressure and results were compared with the most efficient organocatalysts reported in the literature. This study was completed by molecular modeling in order to elucidate the reaction mechanism. DFT calculations showed that the hexafluoroisopropanol functionalities of HBDs strengthened the proton donor capability and allowed a better stabilization by hydrogen bonding of the intermediates and transition states. Finally, the use of this dual organocatalyst was extended to the coupling of CO2 with less reactive oxetanes to produce hydroxyl telechelic oligocarbonates. [less ▲]

Detailed reference viewed: 30 (2 ULg)
See detailSynthesis of novel poly(vinylamine)-based copolymers with controlled compositions
Dréan; Guégan, Philippe; Detrembleur, Christophe ULg et al

Poster (2016, May 23)

Metal binding, pH sensitivity and polyelectrolytes complexation are key characteristics of amine-containing polymers. Among them, poly(vinylamine)s presenting high amine densities are particularly useful ... [more ▼]

Metal binding, pH sensitivity and polyelectrolytes complexation are key characteristics of amine-containing polymers. Among them, poly(vinylamine)s presenting high amine densities are particularly useful in many fields such as coatings , water purification and gas membrane separation. The properties of such polymers strongly depend on the nature of the amines and can thus be adjusted by incorporating different types of amines along the backbone. In this perspective, we developed a strategy for synthesizing poly(vinylamine)-based (co)polymers containing primary and secondary amines as well as imidazole moieties in predictable proportions. First, radical (co)polymerizations of N-vinylacetamide, N-methylvinylacetamide and vinylimidazole were performed followed by deprotection of the amine functions via acidic hydrolysis of the pendant amides. We determined the reactivity ratios of each comonomer pairs and developed the corresponding Skeist’s model, allowing the prediction of the copolymer compositions and distributions. Following this straightforward approach, novel amine-containing copolymers with predictable and precise compositions were made available and should contribute in the future to the development of the above-mentioned applications. [less ▲]

Detailed reference viewed: 15 (3 ULg)
See detailPolymers bearing pendant catechols for organic electrode-active materials in lithium-ion batteries
Patil, Nagaraj ULg; Cordella, Daniela ULg; Aqil, Abdelhafid ULg et al

Conference (2016, May 23)

Herein, we describe the synthesis and organometallic-mediated radical polymerization of 1-vinyl-3-alkylimidazolium-type monomers bearing pendant catechols in its protected version, using a presynthesized ... [more ▼]

Herein, we describe the synthesis and organometallic-mediated radical polymerization of 1-vinyl-3-alkylimidazolium-type monomers bearing pendant catechols in its protected version, using a presynthesized alkyl‒cobalt(III) complex as monocomponent initiator/mediating agent in a controlled fashion. A neat post-polymerization deprotection, followed by facile anion exchange reactions afforded a novel multi-functional poly(ionic liquids)-bearing free catechol functionalities. Prototype Lithium-ion battery, consisting a binder- and current collector-free electroactive polymer-supported buckypaper as the composite cathode, delivered an impressive specific capacity in the range of 199–230 mA h g‒1, relatively at high discharge potential = 3.2–3.4 V (vs Li/Li+), as calculated from CV and galvanostatic charge-discharge experiments. The superior electrochemical performance of the composite cathode consisting of PIL-catechols active-material, in comparison with poly(dopaminde acrylamide) is ascribed to the intrinsic Li-ion conductivity and enhanced surface activity of the imidazolium backbone with TFSI counteranion, compared to the acrylamide backbone. [less ▲]

Detailed reference viewed: 27 (4 ULg)
See detailFe2O3 nanoparticle-functionalized N-doped carbon with interconnected, hierarchical porous structures as high-performance electrode for lithium ion batteries
Alkarmo, Walid ULg; Ouhib, Farid ULg; Aqil, Abdelhafid ULg et al

Poster (2016, May 23)

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous ... [more ▼]

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous frameworks have emerged as attractive materials for various electrochemical energy storage/conversion devices, including Li-ion batteries (LIBs), Li−O2 batteries, Li−S batteries, supercapacitors, and fuel cells. A hierarchically structured macro- and mesoporous N-doped carbon with dispersed Fe2O3 nanoparticles (NDC@Fe2O3) is prepared by thermal treatment of a novel composite composed by PMMA particles decorated by graphene oxide (GO), PPy and iron salts. The NDC@Fe2O3 composite exhibited high surface area with a hierarchical pores structure. Integrated as a lithium ion battery anode, NDC@Fe2O3 exhibited high reversible capacity of 930 mA h/g over 200 cycles. The combination of Fe2O3 nanoparticles with porous carbon to form hybrid anode has been an efficient way to maintain the electronic integrity of the whole electrode since the carbon acts as a buffer layer to accommodate the volume variation and to provide multidimensional electron transport pathways during the charge/discharge process. [less ▲]

Detailed reference viewed: 55 (3 ULg)
See detailTuning morphology and surface properties of emulsion-templated porous polymers by controlled radical polymerization
Mathieu, Kevin ULg; Jérôme, Christine ULg; Debuigne, Antoine ULg

Poster (2016, May 23)

Macroporous polymer monoliths with interconnected structures have attracted considerable interests in the last decades and sustain many applications in the fields of supported catalysis, chromatography ... [more ▼]

Macroporous polymer monoliths with interconnected structures have attracted considerable interests in the last decades and sustain many applications in the fields of supported catalysis, chromatography, microfluidic, water purification, membrane separation, tissue engineering, to name but a few. A very popular and straightforward synthetic approach for such open-cell polymers is the High Internal Phase Emulsion (HIPE) polymerization method. The latter consists in three steps: (i) stabilization of an emulsion in which an internal phase with a volume fraction higher than 74% is dispersed within a minor continuous phase containing a polymer network precursor, (ii) curing of the polymer phase by polymerization or crosslinking reactions, (iii) removal of the internal phase to release the porosity. The surface properties and morphology of the polyHIPEs are important features that must be controlled and adjusted for each applications. In this context, we prepared by controlled radical polymerization a series of well-defined amphiphilic copolymers having different hydrophilic-lipophilic balance (HLB) and chain-ends, used it as stabilizers for the emulsion-templated polymerizations and demonstrated the crucial effect of the structure of the macromolecular surfactant on the morphology of the polyHIPEs. Finally, the physical and chemical anchoring of the macromolecular surfactants at the surface pores were also considered for tuning the surface properties of the porous monoliths. [less ▲]

Detailed reference viewed: 18 (2 ULg)
See detailSynthesis of CO2-sourced hydrogels by using the non-isocyanate polyurethane (NIPU) chemistry
Gennen, Sandro ULg; Grignard, Bruno ULg; Thomassin, Jean-Michel ULg et al

Poster (2016, May 23)

Polyurethane (PUs) is one of the most important polymers and finds applications as elastomers, coatings, adhesives and sealants for automotive or construction. PU is also a material of choice in the ... [more ▼]

Polyurethane (PUs) is one of the most important polymers and finds applications as elastomers, coatings, adhesives and sealants for automotive or construction. PU is also a material of choice in the biomedical domain due to its good biocompatibility, biodegradation and mechanical properties. Especially, PUs hydrogels have been developed in the last years for biomedical applications such as soft contact lenses, wound dressing, drug delivery systems and scaffolds for tissue engineering. Traditionally, PUs are synthesized by a step-growth polymerization between diols and diisocyanates. Because of toxicity issues and a possible interdiction of isocyanates, we focused on developing new PU hydrogels using a non-isocyanate route (Figure 1). The polyurethanes formed by this route are called NIPU (for Non-Isocyanate PolyUrethane). Firstly, chemically cross-linked NIPU gels were synthesized by solvent-free polycondensation between a hydrophilic CO2-sourced polyethyleneglycol bi-cyclic carbonate and a diamine in the presence of a crosslinker. Then, NIPU gels were swelled in water till water equilibrium before characterization of their mechanical properties by compression tests. The influence of the cross-linking ratios (diamine/crosslinker ratio) and diamine structure on the swelling and the compression properties were studied. To reinforce the compression properties of NIPU hydrogel (increase in stress at break, strain at break and compression modulus), a nanofiller was dispersed in the cyclic carbonate/diamine/crosslinker formulation prior to polymerization. For the first time, nanocomposite NIPU hydrogels with high water contents (up to 80%) and good compression properties have been prepared by using low clay content. [less ▲]

Detailed reference viewed: 39 (2 ULg)
See detailPolyphosphoester containing amphiphilic block copolymers as drug nanocarriers
Yilmaz-Ergül, Zeynep ULg; Vanslambrouck, Stéphanie; Thiry, Justine ULg et al

Poster (2016, May 23)

The design of drug delivery systems (DDS) often requires biodegradable and biocompatible materials that allow safe retention and controlled release of the drug. In this respect, poly(ethylene oxide)-b ... [more ▼]

The design of drug delivery systems (DDS) often requires biodegradable and biocompatible materials that allow safe retention and controlled release of the drug. In this respect, poly(ethylene oxide)-b-polyphosphoester amphiphilic block copolymers are known to self-assemble into polymer micelles when placed in water are appropriate drug carriers. In this work, an unsaturated alkene side-chain was introduced on the cyclic phosphate monomer according to a one-step reaction followed by its organocatalyzed polymerization initiated by a poly(ethylene oxide) macroinitiator. After self-assembly into water, the micelles were cross-linked by UV irradiation. Then, these cross-linked micelles have been loaded by doxorubicin, which is a drug to use in cancer therapy. We observed that the doxorubicin loading increased with the number of double bonds on the polyphosphate block of non-cross-linked micelles. This diblock amphiphilic copolymer bearing pendant unsaturations appears thus particularly promising candidate to build micellar drug delivery systems for intravenous injection. [less ▲]

Detailed reference viewed: 15 (3 ULg)
See detailChitosan-based nanofibers mats for tissue engineering
Aqil, Abdelhafid ULg; Croisier, Florence ULg; Colige, Alain ULg et al

Conference (2016, May)

Polymer hydrogels resemble the natural living tissue due to their high water content and soft consistency. They find many applications in the design and production of contact and intraocular lenses ... [more ▼]

Polymer hydrogels resemble the natural living tissue due to their high water content and soft consistency. They find many applications in the design and production of contact and intraocular lenses, biosensors membranes, matrices for repairing and regenerating a wide diversity of tissues and organs. Polysaccharides such as chitosan and hyaluronic acid based hydrogels have shown a great potential for biomedical and pharmaceutical applications, on account of their remarkable compatibility with physiological medium. Besides, it is degraded in a physiological environment into non-toxic products, which make them outstanding candidates for short- to medium-term applications, especially for tissue engineering. In this respect, the preparation of nanometric fibers mats based on this polysaccharide are highly interesting as such structure mimics the one of skin extracellular matrix. Such nanofibrous materials can be prepared by electrospinning (Figure 1). This technique uses a high voltage to create an electrically charged jet of polymer solution to obtain polymer fibers ranging from nanometers to a few microns in diameter. We thus have investigated strategies allowing to generate chitosan based nanofiber mats exhibiting a mechanical resistance strong enough to be easily handled while keeping the peculiar features of chitosan hydrogels favoring the interaction with cells and soft tissues to provide efficient tissue reconstruction. In a first strategy, polysaccharide-based nanofibers with a multilayered structure were prepared by combining electrospinning (ESP) and layer-by-layer (LBL) deposition techniques. Elastic nanofibers bearing charges at their surface were firstly prepared by electrospinning poly(ε-caprolactone) (PCL) with a polyelectrolyte precursor. After activation by adjusting the pH, the layer-by-layer deposition of chitosan and hyaluronic acid, can be used to coat the electrospun fibers. A multilayered structure is then achieved by alternating the deposition of the positively charged chitosan with the deposition of a negatively charged polyelectrolyte. These novel polysaccharide-coated PCL fiber mats remarkably combine the mechanical resistance typical of the core material (PCL) – particularly in the hydrated state –, with the surface properties of chitosan. Besides, crosslinked nanofibrous mats of chitosan and polyethylene oxide blends, were successfully prepared via electrospinning technique followed by heat mediated chemical crosslinking. This chemical cross-linking allows adjusting the mechanical resistance of the mats while preserving their biocompatibility. In both cases, the control of the nanofiber structure offered by the electrospinning technology, makes the developed processes very promising to precisely design biomaterials for tissue engineering. Preliminary cell culture tests corroborate the potential use of such systems in wound healing applications. [less ▲]

Detailed reference viewed: 230 (11 ULg)
See detailCyclic and oligo-carbonates by organocatalytic coupling of CO2 with epoxides or oxetanes
Alves, Margot ULg; Grignard, Bruno ULg; Boyaval, Amélie ULg et al

Conference (2016, April 20)

Valorising CO2 as a renewable C1 feedstock for producing added value building blocks is the scope of many academic and industrial researches. Carbon dioxide is a thermodynamically and kinetically stable ... [more ▼]

Valorising CO2 as a renewable C1 feedstock for producing added value building blocks is the scope of many academic and industrial researches. Carbon dioxide is a thermodynamically and kinetically stable molecule that can be converted into five and six membered cyclic carbonates by coupling with epoxides or oxetanes, respectively, using appropriate catalysts. Although transition metal catalysts are efficient under atmospheric pressure and ambient temperature, most of them are poorly selective, sensitive to hydrolysis and/or oxidation and/or toxic whereas less/non-toxic and eco-friendly organocatalysts such as ionic liquids and halide salts are generally only efficient at very high temperature and pressure favouring their thermal degradation. To overcome these limitations, we developed a new highly efficient bicomponent homogeneous organocatalyst composed of an ammonium salt as the catalyst and fluorinated single or double hydrogen bond donor activators. Through online FTIR kinetic studies, we demonstrated that this new organocatalyst showed unexpected catalytic activity for the fast and selective addition of CO2 onto epoxides under solvent-free and mild experimental conditions. The use of this dual catalyst was then extended to the coupling of CO2 with less reactive oxetanes to produce hydroxyl telechelic oligocarbonates. In the first part of this talk, based on kinetics of reactions followed by online FTIR under pressure, we will describe the reaction conditions required for the organocatalytic coupling of CO2 with epoxides and oxetanes. In the second part, the mechanism of the reaction will be approached and discussed based on DFT calculations. Finally, we will compare and discuss the efficiency of various organocatalytic systems for this type of reaction. [less ▲]

Detailed reference viewed: 29 (3 ULg)
Full Text
Peer Reviewed
See detailDirect one-pot synthesis of poly(ionic liquid) nanogels by cobalt-mediated radical cross-linking copolymerization in organic or aqueous media
Weiss-Maurin, Mathilde ULg; Cordella, Daniela ULg; Jérôme, Christine ULg et al

in Polymer Chemistry (2016), 7(14), 2521-2530

Nanogels of controlled kinetic chain length were synthesized by cobalt-mediated radical cross-linking copolymerization (CMRccP) involving a vinyl monomer and a divinyl cross-linker. This strategy was ... [more ▼]

Nanogels of controlled kinetic chain length were synthesized by cobalt-mediated radical cross-linking copolymerization (CMRccP) involving a vinyl monomer and a divinyl cross-linker. This strategy was first validated to achieve neutral poly(vinyl acetate) nanogels by CMRccP of vinyl acetate and divinyl adipate as cross-linker, at 40 °C, in presence of an alkyl- cobalt(III) serving both as initiator and controlling agent, using ethyl acetate as solvent. Poly(ionic liquid) nanogels were then directly obtained by CMRccP of N-vinyl-3-ethyl imidazolium bromide, in presence of 1,13-divinyl-3-decyl diimidazolium bromide as cross-linker. CMRccP experiments could be conducted either in organic solvent using dimethyl formamide or, more interestingly, in aqueous solution, demonstrating the robustness and the versatility of this one-step process. Chain extensions of PILs nanogels were also carried out in water, forming core-shell structures, thus opening new avenues in the design of functional nanogels. [less ▲]

Detailed reference viewed: 38 (13 ULg)
Full Text
Peer Reviewed
See detailCO2-blown microcellular non-isocyanate polyurethane (NIPU) foams: from bio- and CO2-sourced monomers to potentially thermal insulating materials
Grignard, Bruno ULg; Thomassin, Jean-Michel ULg; Gennen, Sandro ULg et al

in Green Chemistry (2016), 18(7), 2206-2215

Bio- and CO2-sourced non-isocyanate polyurethane (NIPU) microcellular foams were prepared using supercritical carbon dioxide (scCO2) foaming technology. These low-density foams offer low thermal ... [more ▼]

Bio- and CO2-sourced non-isocyanate polyurethane (NIPU) microcellular foams were prepared using supercritical carbon dioxide (scCO2) foaming technology. These low-density foams offer low thermal conductivity and have an impressive potential for use in insulating materials. They constitute attractive alternatives to conventional polyurethane foams. We investigated CO2’s ability to synthesize the cyclic carbonates that are used in the preparation of NIPU by melt step-growth polymerization with a bio-sourced amino-telechelic oligoamide and for NIPU foaming. Our study shows that CO2 is not only sequestered in the material for long-term application, but is also valorized as a blowing agent in the production of NIPU foams. Such foams will contribute to energy conservation and savings by reducing CO2 emissions. [less ▲]

Detailed reference viewed: 101 (22 ULg)
Full Text
Peer Reviewed
See detailHot Melt Extrusion as a New Method to Form Inclusion Complexes with Cyclodextrins
Thiry, Justine ULg; Krier, Fabrice; Ratwatte, Shenelka et al

Conference (2016, April 06)

Detailed reference viewed: 21 (0 ULg)