References of "Hubert, Aurelia"
     in
Bookmark and Share    
Full Text
See detailLast millennium gravity reworking processes in the western Gulf of Corinth: correlations with historical seismicity and indication of earthquake clusters
Beckers, Arnaud; Beck, Christian; Hubert, Aurelia ULiege et al

in Geophysical Research Abstracts (2016), 18

The western tip of the Corinth Rift is considered as the most active within this major extensional structure, as evidenced by: seismicity, GPS kinematics, and INSAR data (Bernard et al., 2006). Within the ... [more ▼]

The western tip of the Corinth Rift is considered as the most active within this major extensional structure, as evidenced by: seismicity, GPS kinematics, and INSAR data (Bernard et al., 2006). Within the frame of a multidisciplinary project dedicated to seismic hazards assessment for this region, two offshore surveys - high resolution seismic reflection and gravity coring - were conducted in this area. They were dedicated to the Late Quaternary sedimentary fill as the latter was expected to record both long term deformation (Beckers et al., 2015) and sedimentary “events” related to major earthquakes and/or tsunamis. Seismic reflection imaging displays the time and geographical distributions of large submarine landslides (MTDs) during the last 100 kyr. Based on a morpho-sedimentary map and the active fault pattern, up to 2 m-long cores were selected to detect and characterise the possible impact of historical events. The chronological control is based on AMS 14C dating and four detailed 210Pb and 137Cs profiles. Sedimentation (components, sources, transport and settling mechanisms) was analysed through textural, chemical, and mineralogical parameters. Turbidites could be clearly separated from the hemipelagic deposits. Our attempt to correlate identified sedimentary “events” with historical data greatly benefited from a recently elaborated catalog (Albini et al., 2014) with precisely re-located epicentral areas. Cable breaks were also taken into account. Attenuation models (Papazachos & Papaioannou’s, 1997) were used to discuss paleo-intensities vs. distance form epicentral areas. From the whole set of cores, the following results may be underlined: - the correlations between cores from the different sites are not complete, including for a few neighbouring sites belonging to the same morpho-sedimentary unit; we relate these discrepancies to the complex bottom morphology and/or to bottom currents responsible for local erosion; - for several well-documented earthquakes and tsunamis, we could not find a clearly recorded sedimentary impact; - non earthquake-triggered MTDs (as the 1963 event) produced specific layers identical to the major earthquakes impacts. At the difference, for a few cores from the deep axial floor, several sandy or silty turbidites permit to establish correlations: i) between coring sites, ii) with earthquakes which stroke two different areas, respectively east and west of the concerned part of the Gulf. Furthermore, the sedimentary events show a particular time distribution for the last 600 yr: - two intervals with short recurrences: a recent one ( 1900 AD-Present or 1750 AD-Present) and an older one ( 1550 AD-1700 AD or 1450 AD-1800 AD); these time distributions differ from each coring site; - a long “quiet” period (150 to 200 yr). From these results, we tentatively consider this sedimentary record as an indicator of a migration of seismogenic faulting activity. Ref.: Albini, P., et al., 2014. Techn. Rep. I.N.G.V. Roma. Beckers, A., et al., 2015. Marine Geology, 360:55–69 Bernard, P., et al., 2006. Tectonophysics, 426:7-30. Papazachos, C., Papaioannou, C., 1997. Journal of Seismology, 1:181-201. [less ▲]

Detailed reference viewed: 4 (0 ULiège)
Full Text
See detailGeological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough, Japan
Garett, Ed; Fujiwara, Osamu; Garrett, Philip et al

in Geophysical Research Abstracts (2016)

The Nankai-Suruga Trough, lying immediately south of Japan’s densely populated and highly industrialised southern coastline, generates devastating great earthquakes (magnitude > 8). Intense shaking ... [more ▼]

The Nankai-Suruga Trough, lying immediately south of Japan’s densely populated and highly industrialised southern coastline, generates devastating great earthquakes (magnitude > 8). Intense shaking, crustal deformation and tsunami generation accompany these ruptures. Forecasting the hazards associated with future earthquakes along this >700 km long fault requires a comprehensive understanding of past fault behaviour. While the region benefits from a long and detailed historical record, palaeoseismology has the potential to provide a longer-term perspective and additional insights. Here, we summarise the current state of knowledge regarding geological evidence for past earthquakes and tsunamis, incorporating literature originally published in both Japanese and English. This evidence comes from a wide variety of sources, including uplifted marine terraces and biota, marine and lacustrine turbidites, liquefaction features, subsided marshes and tsunami deposits in coastal lakes and lowlands. We enhance available results with new age modelling approaches. While publications describe proposed evidence from > 70 sites, only a limited number provide compelling, well-dated evidence. The best available records allow us to map the most likely rupture zones of eleven earthquakes occurring during the historical period. Our spatiotemporal compilation suggests the AD 1707 earthquake ruptured almost the full length of the subduction zone and that earthquakes in AD 1361 and 684 were predecessors of similar magnitude. Intervening earthquakes were of lesser magnitude, highlighting variability in rupture mode. Recurrence intervals for ruptures of the a single seismic segment range from less than 100 to more than 450 years during the historical period. Over longer timescales, palaeoseismic evidence suggests intervals ranging from 100 to 700 years. However, these figures reflect thresholds of evidence creation and preservation as well as genuine recurrence intervals. At present, we have not identified any geological data that support the occurrence earthquakes of larger magnitude than that experienced in AD 1707; however, few published studies seek to establish the relative magnitudes of different earthquake and tsunami events. Alongside the paucity of research designed to quantify the magnitude of past earthquakes, we emphasise a number of other issues, including alternative hypotheses for proposed palaeoseismic evidence, the lack of robust chronological frameworks and insufficient appreciation of changing thresholds of evidence creation and preservation over time. These key issues must be addressed by future research. [less ▲]

Detailed reference viewed: 5 (0 ULiège)
Full Text
Peer Reviewed
See detailEarthquake imprints on a lacustrine deltaic system: the Kürk Delta along the East Anatolian Fault (Turkey)
Hubert, Aurelia ULiege; El Ouahabi, Meriam ULiege; Garcia-Moreno, David et al

in Sedimentology (2016)

Deltas contain sedimentary records that are not only indicative of water level changes, but also particularly sensitive to earthquake shaking typically resulting in soft-sediment-deformation structures ... [more ▼]

Deltas contain sedimentary records that are not only indicative of water level changes, but also particularly sensitive to earthquake shaking typically resulting in soft-sediment-deformation structures. The Kürk lacustrine delta lies at the south-western extremity of Lake Hazar in eastern Turkey and is adjacent to the seismogenic East Anatolian Fault (EAF), which has generated earthquakes of magnitude 7. In this paper we have reevaluated water level changes and earthquake shaking that have affected the Kürk Delta combining geophysical data (seismic-reflection profiles and side-scan sonar), remote sensing images, historical data, onland outcrops and offshore coring. The history of water level changes provides a temporal framework for the depositional record. In addition to the commonly soft-sediment-deformation documented previously, onland outcrops reveal a record of deformation (fracturing, tilt and clastic dykes) linked to large earthquake-induced liquefactions and lateral spreading. The recurrent liquefaction structures can be used to obtain a paleoseismological record. Five event horizons were identified that could be linked to historical earthquakes occurring in the last 1000 years along the EAF. Sedimentary cores sampling the most recent subaqueous sedimentation revealed the occurrence of another type of earthquake indicator. Based on radionuclide dating (137Cs and 210Pb), two major sedimentary events were attributed to the 1874-1875 EAF earthquake sequence. Their sedimentological characteristics were determined by X-ray imagery, XRD, LOI, grain-size distribution and geophysical measurements. The events are interpreted to be hyperpycnal deposits linked to post-seismic sediment reworking of earthquake-triggered landslides. [less ▲]

Detailed reference viewed: 66 (0 ULiège)
Full Text
Peer Reviewed
See detailCharacteristics and frequency of large submarine landslides at the western tip of the Gulf of Corinth
Beckers, Arnaud; Hubert, Aurelia ULiege; Beck, Christian et al

in Geophysical Research Abstracts (2016), 18

Detailed reference viewed: 14 (1 ULiège)
Full Text
Peer Reviewed
See detailA systematic review of geological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough, Japan
Garrett, Ed; Fujiwara, Osamu; Garrett, Philip et al

in Earth-Science Reviews (2016)

The Nankai-Suruga Trough, the subduction zone that lies immediately south of Japan’s densely populated southern coastline, generates devastating great earthquakes (magnitude > 8) characterised by intense ... [more ▼]

The Nankai-Suruga Trough, the subduction zone that lies immediately south of Japan’s densely populated southern coastline, generates devastating great earthquakes (magnitude > 8) characterised by intense shaking, crustal deformation and tsunami generation. Forecasting the hazards associated with future earthquakes along this >700 km long fault requires a comprehensive understanding of past fault behaviour. While the region benefits from a long and detailed historical record, palaeoseismology has the potential to provide a longer-term perspective and additional crucial insights. In this paper, we summarise the current state of knowledge regarding geological evidence for past earthquakes and tsunamis along the Nankai-Suruga Trough. Incorporating literature originally published in both Japanese and English and enhancing available results with new age modelling approaches, we summarise and critically evaluate evidence from a wide variety of sources. Palaeoseismic evidence includes uplifted marine terraces and biota, marine and lacustrine turbidites, liquefaction features, subsided marshes and tsunami deposits in coastal lakes and lowlands. While 75 publications describe proposed evidence from more than 70 sites, only a limited number provide compelling, well-dated evidence. The best available records enable us to map the most likely rupture zones of twelve earthquakes occurring during the historical period. This spatiotemporal compilation suggests the AD 1707 earthquake ruptured almost the full length of the subduction zone and that earthquakes in AD 1361 and 684 may have been predecessors of similar magnitude. Intervening earthquakes were of lesser magnitude, highlighting the variability in rupture mode that characterises the Nankai-Suruga Trough. Recurrence intervals for ruptures of the same seismic segment range from less than 100 to more than 450 years during the historical period. Over longer timescales, palaeoseismic evidence suggests intervals between earthquakes ranging from 100 to 700 years, however these figures reflect a range of thresholds controlling the of creation and preservation of evidence at any given site as well as genuine earthquake recurrence intervals. At present, there is no geological data that suggest the occurrence of a larger magnitude earthquake than that experienced in AD 1707, however few studies have sought to establish the relative magnitudes of different earthquake and tsunami events along the Nankai-Suruga Trough. Alongside the lack of research designed to quantify the maximum magnitude of past earthquakes, we emphasise issues over alternative hypotheses for proposed palaeoseismic evidence, the paucity of robust chronological frameworks and insufficient appreciation of changing thresholds of evidence creation and preservation over time as key issues that must be addressed by future research. [less ▲]

Detailed reference viewed: 32 (0 ULiège)
Full Text
See detailDeforestation and soil-loss linked to Bronze and Roman occupations recorded in the Amik Basin (Southern Turkey)
El Ouahabi, Meriam ULiege; Hubert, Aurelia ULiege; Lebeau, Hèlène et al

Conference (2015, July 27)

Detailed reference viewed: 104 (30 ULiège)
Full Text
See detailLand erosion and associated evolution of clay minerals assemblages in Mediterranean region (Southern Turkey): Amik Lake
El Ouahabi, Meriam ULiege; Hubert, Aurelia ULiege; Lebeau, Helene et al

Poster (2015, July)

Under Mediterranean context, continuous human occupation is attested in the Amik Basin (southern Turkey) since 6000-7000 BC. The Basin also is crossed by The Dead Sea Fault (DSF), a major neotectonic ... [more ▼]

Under Mediterranean context, continuous human occupation is attested in the Amik Basin (southern Turkey) since 6000-7000 BC. The Basin also is crossed by The Dead Sea Fault (DSF), a major neotectonic structure in the Middle East extending from the Red Sea in the south to the East Anatolian Fault Zone in the north. The study focuses on the mineralogy and clay mineralogy record of the Amik Lake occupying the central part of the Basin. Our objective is to constrain major mineralogical and clay minerals evolution in the area over the last 4000 years and assess changes that would be related to the different land uses during the different Bronze, Roman, Ottoman and Modern civilizations. Sediments were collected at 1 to 2 cm intervals in core sediments up to a depth of 6 meters in the clay deposits. Geochemistry (XRF), mineralogy (XRD) and clay mineralogy are applied to study the sediment records. The age of the record is constrained combining radionuclide and radiocarbon dating. Chemical and mineralogical composition of sediments is quite diversified reflecting the significant geological variation of drainage basins. Abundant mixed-layer and partly disordered minerals characterize the different sedimentary levels recorded in those cores. Levels relatively rich in chlorite, illite and quartz are interpreted as corresponding to relatively dry periods, while more humid periods lead to more intensive weathering and consequently to the dominance of clay minerals more advanced in the relative stability scale, such as kaolinite. Smectite is taken to indicate a climate with contrasting seasons and a pronounced dry season. The sedimentary record clearly shows two periods indicating strong soil erosion in the Lake catchment. The most recent erosion phase is modern. The oldest one would have started during the late Bronze period and lasted until the late Roman Period. The first and older period is attributed to a strong aggradation linked to major increase in erosion. Our study shows that this episode has specific characteristics: mixed-layer clay mineral, high percent in Ni, Cr and Mg coupled with significant amount of organic matter of terrestrial origin. Ni and Mg most probably come from the Amanos Mountains an ophiolitic belt indicating an intensive upland cultivation and possible exploitation of its mineral resource. The second period is attributed to the modern period. The signature of the increase in erosion is different, because most of the soil cover has already been eroded. Only a patchy thin and unmature soil cover exists since the Late Roman time. Erosion is associated with a marked increase of smectite-illite interstratified clay, goethite and hematite found in deep soil horizons. Moreover, a marked increase in Cr is showed and is probably related to an enhanced exploitation of its mineral resource and to a renew land exploitation of the Amanos Mountain Range. [less ▲]

Detailed reference viewed: 59 (5 ULiège)
Full Text
See detailLate Holocene history of the Fuji Five Lakes (Japan)
Lamair, Laura ULiege; Hubert, Aurelia ULiege; Boes, Evelien et al

Conference (2015, July)

Detailed reference viewed: 26 (5 ULiège)
See detailActive faulting, tectonic evolution, and offshore paleoseismology at the western tip of the Gulf of Corinth, Greece
Beckers, Arnaud ULiege; Hubert, Aurelia ULiege; Beck, Christian

Scientific conference (2015, June 11)

Detailed reference viewed: 25 (1 ULiège)
Full Text
Peer Reviewed
See detailSedimentary impacts of recent moderate earthquakes in different settings in the Western Gulf of Corinth, Greece
Beckers, Arnaud ULiege; Mortier, Clément; Beck, Christian et al

Poster (2015, April 21)

11 short gravity cores retrieved in the Western Gulf of Corinth, Greece, allowed identifying event deposits whose age ranges were compared to an updated earthquakes catalogue for the area. 210Pb-derived ... [more ▼]

11 short gravity cores retrieved in the Western Gulf of Corinth, Greece, allowed identifying event deposits whose age ranges were compared to an updated earthquakes catalogue for the area. 210Pb-derived age-depth curves show that the majority of the event deposits may have been triggered by earthquakes. These results show that moderate earthquakes (Mw ~6.0-6.5) may significantly impact different marine settings, from shallow shelves (70-100 m deep) to the basin floor (330 m deep). The deepest coring sites show the best possible record, but one major earthquake is missing and the age of one event deposit does not fit with any known earthquake. More cores are needed to check the spatial extent of each deposit and to validate the absence of record of some earthquakes, like the 1995 Aigion earthquake. [less ▲]

Detailed reference viewed: 43 (5 ULiège)
Full Text
See detailBasement depth and sedimentary infill from deep seismic reflection data at the western tip of the offshore Corinth Rift
Beckers, Arnaud ULiege; Tripsanas, Efthymios; Hubert, Aurelia ULiege et al

Conference (2015, April 17)

The Corinth rift is a young continental rift located in central Greece. The active part of the rift forms an E-W striking depression – the Gulf of Corinth – that is the deepest in its central part ... [more ▼]

The Corinth rift is a young continental rift located in central Greece. The active part of the rift forms an E-W striking depression – the Gulf of Corinth – that is the deepest in its central part. Extensive seismic surveys have imaged the basin's basement and allowed to estimate the total extension across most of the Gulf except its western tip. Extension is high in the central part and decreases westward and eastward, as reflected in the present-day bathymetry. Two decades of GPS measurements have shown that the extension rate increases westwards from ~5 to 10-15 mm yr-1, but this is not consistent with the long term pattern. However, no data allowed so far to estimate the basement depth at the western tip of the Gulf, where the geodetic extension rate is the largest. Such data would allow to check the apparent inconsistency between the present rate and the long-term estimates of crustal extension. We present here an unpublished multichannel seismic line dating from 1979 and crossing the western tip of the Gulf of Corinth. The line is 22 km long and strikes WNW-ESE, from the Mornos delta to the West-Channel fault. A Maxipulse source has been used, allowing to image the basement below the synrift sedimentary infill. To the east, a ~1.6 km deep basin is imaged between the southern margin of the Gulf and an inactive south-dipping fault located between the Aigion and the Trizonia faults. The sedimentary infill consists in an alternation between basin-focused bodies made of incoherent reflections and more extensive high-amplitude reflectors. Attributing this alternation to eustatic variations give an age of 300-350 ka to the oldest well imaged deposits. Northwest of the Trizonia fault, the basement is imaged at shallower depth, i.e. ~450 m. The western tip of the seismic line reaches the Mornos delta, close to the northern shoreline. There, the depth to the basement is larger, reaching ~1.2 km. The infill is made of 3 units : on the basement lies a thin unit of incoherent reflections that may corresponds to coarse-grained fluvial deposits. A second unit of parallel, high-amplitude, low-frequency reflections could represent deeper-water deposits. The last seismic unit represents the Mornos delta coarse-grained deposits, from 0 to ~0.7 km deep. The depth of the basement deduced from this seismic line at the western tip of the Gulf of Corinth (1.2-1.6 km) is shallower than the one in the central part of the Gulf (2.5-3 km). This reinforce the inconsistency between long-term and short-term rates of extension in the Corinth Rift, which may be explained by assuming that the Western Corinth Rift initiated much later than the Central Rift. These data also allow to constrain the total displacement on the N-dipping Psathopyrgos fault, one of the major, normal, basin-bounding faults at the western tip of the Rift. The total offset would reach 2.1-2.3 km and the uplift/subsidence ratio would be ~1:1.7, implying a slip rate of 2.2-2.5 mm yr-1 based on footwall uplift rate data. [less ▲]

Detailed reference viewed: 25 (1 ULiège)
Full Text
See detailInvestigation of the Five Fuji Lakes and their potential of recording paleoearthquakes
Lamair, Laura ULiege; Hubert, Aurelia ULiege; Boes, Evelien et al

Conference (2015, March 04)

Detailed reference viewed: 24 (4 ULiège)
Full Text
Peer Reviewed
See detailCharacterization of building materials from the aqueduct of Antioch-on-the-Orontes (Turkey)
Benjelloun, Yacine; de Sigoyer, Julia; Carlut, Julia et al

in Comptes Rendus Geoscience (2015)

The Roman aqueduct of Antioch-on-the-Orontes (Turkey), a city located near the junction between the active Dead Sea fault and the East Anatolian fault, has been damaged several times due to historical ... [more ▼]

The Roman aqueduct of Antioch-on-the-Orontes (Turkey), a city located near the junction between the active Dead Sea fault and the East Anatolian fault, has been damaged several times due to historical earthquakes, as mentioned in ancient texts. The traces of repairs are studied in order to identify their potential seismic origin. The deformations of the structure were characterised thanks to a LIDAR scan. Several bricks were sampled on different parts of the city’s aqueducts, on the original structure and on repaired parts. The bricks were characterized through a petrological approach. 14C and archaeomagnetism were tested on the bricks in order to constrain the age of their production. The synthesis of all the data showed a local origin for the bricks, and led to the identification of several manufacturing techniques and several types of production, thus, confirming the potentiality of this approach to date and characterise post-seismic repairs. [less ▲]

Detailed reference viewed: 28 (0 ULiège)
Full Text
Peer Reviewed
See detailSubmarine Paleo-earthquake record of the Cinarcik segment of the North Anatolian Fault in the Marmara Sea (Turkey)
Drab, Laureen; Hubert, Aurelia ULiege; Schmidt, Sabine et al

in Bulletin Seismological Society of America (2015), 105

The submarine part of the North Anatolian Fault (NAF) in the Marmara Sea is a significant hazard for the city of Istanbul (Turkey). The use of paleoseismological data to provide an accurate seismic risk ... [more ▼]

The submarine part of the North Anatolian Fault (NAF) in the Marmara Sea is a significant hazard for the city of Istanbul (Turkey). The use of paleoseismological data to provide an accurate seismic risk assessment for the area is constrained by the fact that the NAF system is submarine near Istanbul; thus a history of paleoearthquakes can be inferred only by using sediment cores. Here a record of turbidites was obtained in two cores and used to reconstruct the earthquake history along a main branch of the NAF, the Cinarcik Segment. Kullenberg core Klg04 (4 m long) was collected during Marmarascarps mission from a berm north of the fault and a second core (Klg03, 3.5 m long) was positioned in the Cinarcik Basin, 3 km south of the fault. Sedimentary sequences in the two cores were correlated using variations in Ca/Ti ratio, which reflect the local aquatic productivity compared with more terrigenous input. The turbidites between the two cores were then classified to distinguish the synchronous ones from the other ones. Radionuclide measurements suggest that the most recent turbidite recorded in both cores was triggered by the M=7.3 1894 earthquake. We conclude that the turbidites are earthquake-generated, based on: 1) their distinctive sedimentological and geochemical signatures, previously described and applied in the Marmara Sea; 2) the correlation of turbidites between cores at berm and basin sites; 3) the match of the most recent turbidites with a 19th century historical earthquake; and 4) the elimination of others processes. Because of its specific geomorphological location, core Klg04 likely records only mass wasting events related to the rupture on the Cinarcik Segment. To date older turbidites, we used 14C and paleomagnetic data to build an OxCal age model with a local reservoir correction (ΔR) of 400±50 yr. The Cinarcik Segment is found to have ruptured in AD1894, AD1509, sometime in the 14th century, AD989, AD740 and in the 5th century and have a mean recurrence interval of rupture between 243 and 396 years. Following the age model obtained we finally used the earthquake record history of the Cinarcik Segment to infer the rupture history of adjacent segments of the North Anatolian Fault during six earthquake cycles over the past 1500 years. [less ▲]

Detailed reference viewed: 105 (34 ULiège)