References of "Hellier, C"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailWASP-78b and WASP-79b: Two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus
Smalley, B; Anderson, D R; Collier-Cameron, A et al

in Astronomy and Astrophysics (2012), 547

We report the discovery of WASP-78b and WASP-79b, two highly-bloated Jupiter-mass exoplanets orbiting F-type host stars. WASP-78b orbits its V=12.0 host star (TYC 5889-271-1) every 2.175 days and WASP-79b ... [more ▼]

We report the discovery of WASP-78b and WASP-79b, two highly-bloated Jupiter-mass exoplanets orbiting F-type host stars. WASP-78b orbits its V=12.0 host star (TYC 5889-271-1) every 2.175 days and WASP-79b orbits its V=10.1 host star (CD-30 1812) every 3.662 days. A simultaneous fit to WASP and TRAPPIST transit photometry and CORALIE radial-velocity measurements yields planetary masses of 0.89 +/- 0.08 M_Jup and 0.90 +/- 0.08 M_Jup, and radii of 1.70 +/- 0.11 R_Jup and 2.09 +/- 0.14 R_Jup, for WASP-78b and WASP-79b, respectively. The planetary equilibrium temperature of T_P = 2350 +/- 80 K for WASP-78b makes it one of the hottest of the currently known exoplanets. The radius of WASP-79b suggests that it is potentially the largest known exoplanet. [less ▲]

Detailed reference viewed: 8 (1 ULg)
Full Text
Peer Reviewed
See detailWASP-44b, WASP-45b and WASP-46b: three short-period, transiting extrasolar planets
Anderson, D. R.; Collier Cameron, A.; Gillon, Michaël ULg et al

in Monthly Notices of the Royal Astronomical Society (2012), 422(3), 1988

We report the discovery of three extrasolar planets that transit their moderately bright (Vmag = 12-13) host stars. WASP-44b is a 0.89-MJup planet in a 2.42-day orbit around a G8V star. WASP-45b is a 1.03 ... [more ▼]

We report the discovery of three extrasolar planets that transit their moderately bright (Vmag = 12-13) host stars. WASP-44b is a 0.89-MJup planet in a 2.42-day orbit around a G8V star. WASP-45b is a 1.03-MJup planet which passes in front of the limb of its K2V host star every 3.13 days. Weak Ca H+K emission seen in the spectra of WASP-45 suggests the star is chromospherically active. WASP-46b is a 2.10-MJup planet in a 1.43-day orbit around a G6V star. Rotational modulation of the light curves of WASP-46 and weak Ca H+K emission in its spectra show the star to be photospherically and chromospherically active. We imposed circular orbits in our analyses as the radial velocity data are consistent with (near-)circular orbits, as could be expected from both empirical and tidal-theory perspectives for such short-period, Jupiter-mass planets. We discuss the impact of fitting for eccentric orbits for these type of planets when not supported by the data. The derived planetary and stellar radii depend on the fitted eccentricity and further studies use these quantities in attempts to understand planet structure, the interdependence of parameters and the relevant physics for extrasolar planets. As such, we recommend exercising caution in fitting the orbits of short period, Jupiter-mass planets with an eccentric orbital model when there is no evidence of non-circularity. [less ▲]

Detailed reference viewed: 16 (3 ULg)
Full Text
Peer Reviewed
See detailRossiter-McLaughlin effect measurements for WASP-16, WASP-25 and WASP-31★
Brown, D J A; Cameron, A Collier; Anderson, D R et al

in Monthly Notices of the Royal Astronomical Society (2012)

We present new measurements of the Rossiter-McLaughlin (RM) effect for three Wide Angle Search for transiting Planets (WASP) planetary systems, WASP-16, WASP-25 and WASP-31, from a combined analysis of ... [more ▼]

We present new measurements of the Rossiter-McLaughlin (RM) effect for three Wide Angle Search for transiting Planets (WASP) planetary systems, WASP-16, WASP-25 and WASP-31, from a combined analysis of their complete sets of photometric and spectroscopic data. We find a low-amplitude RM effect for WASP-16 (T[SUB]eff[/SUB]= 5700 ± 150 K), suggesting that the star is a slow rotator and thus of an advanced age, and obtain a projected alignment angle of ?. For WASP-25 (T[SUB]eff[/SUB]= 5750 ± 100 K), we detect a projected spin-orbit angle of λ= 14°.6 ± 6°.7. WASP-31 (T[SUB]eff[/SUB]= 6300 ± 100 K) is found to be well aligned, with a projected spin-orbit angle of λ= 2°.8 ± 3°.1. A circular orbit is consistent with the data for all three systems, in agreement with their respective discovery papers. We consider the results for these systems in the context of the ensemble of RM measurements made to date. We find that whilst WASP-16 fits the hypothesis of Winn et al. that 'cool' stars (T[SUB]eff[/SUB] < 6250 K) are preferentially aligned, WASP-31 has little impact on the proposed trend. We bring the total distribution of the true spin-orbit alignment angle, ψ, up to date, noting that recent results have improved the agreement with the theory of Fabrycky & Tremaine at mid-range angles. We also suggest a new test for judging misalignment using the Bayesian information criterion, according to which WASP-25 b's orbit should be considered to be aligned. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailThermal emission at 4.5 and 8 micron of WASP-17b, an extremely large planet in a slightly eccentric orbit
Anderson, D. R.; Smith, A. M. S.; Lanotte, Audrey ULg et al

in Monthly Notices of the Royal Astronomical Society (2011), 416(3), 2108-2122

We report the detection of thermal emission at 4.5 and 8 micron from the planet WASP-17b. We used Spitzer to measure the system brightness at each wavelength during two occultations of the planet by its ... [more ▼]

We report the detection of thermal emission at 4.5 and 8 micron from the planet WASP-17b. We used Spitzer to measure the system brightness at each wavelength during two occultations of the planet by its host star. By combining the resulting light curves with existing transit light curves and radial velocity measurements in a simultaneous analysis, we find the radius of WASP-17b to be 2.0 Rjup, which is 0.2 Rjup larger than any other known planet and 0.7 Rjup larger than predicted by the standard cooling theory of irradiated gas giant planets. We find the retrograde orbit of WASP-17b to be slightly eccentric, with 0.0012 < e < 0.070 (3 sigma). Such a low eccentricity suggests that, under current models, tidal heating alone could not have bloated the planet to its current size, so the radius of WASP-17b is currently unexplained. From the measured planet-star flux-density ratios we infer 4.5 and 8 micron brightness temperatures of 1881 +/- 50 K and 1580 +/- 150 K, respectively, consistent with a low-albedo planet that efficiently redistributes heat from its day side to its night side. [less ▲]

Detailed reference viewed: 22 (7 ULg)
Full Text
Peer Reviewed
See detailWASP-35b, WASP-48b and WASP-51b: Two new planets and an independent discovery of HAT-P-30b
Enoch, B.; Anderson, D. R.; Barros, S. C. C. et al

in Astronomical Journal (The) (2011), 142(3), 86

We report the detection of WASP-35b, a planet transiting a metal-poor ([Fe/H] = -0.15) star in the Southern hemisphere, WASP-48b, an inflated planet which may have spun-up its slightly evolved host star ... [more ▼]

We report the detection of WASP-35b, a planet transiting a metal-poor ([Fe/H] = -0.15) star in the Southern hemisphere, WASP-48b, an inflated planet which may have spun-up its slightly evolved host star of 1.75 R_sun in the Northern hemisphere, and the independent discovery of HAT-P-30b / WASP-51b, a new planet in the Northern hemisphere. Using WASP, RISE, FTS and TRAPPIST photometry, with CORALIE, SOPHIE and NOT spectroscopy, we determine that WASP-35b has a mass of 0.72 +/- 0.06 M_J and radius of 1.32 +/- 0.03 R_J, and orbits with a period of 3.16 days, WASP-48b has a mass of 0.98 +/- 0.09 M_J, radius of 1.67 +/- 0.08 R_J and orbits in 2.14 days, while WASP-51b, with an orbital period of 2.81 days, is found to have a mass of 0.76 +/- 0.05 M_J and radius of 1.42 +/- 0.04 R_J, agreeing with values of 0.71 +/- 0.03 M_J and 1.34 +/- 0.07 R_J reported for HAT-P-30b. [less ▲]

Detailed reference viewed: 23 (4 ULg)
Full Text
Peer Reviewed
See detailWASP-50 b: a hot Jupiter transiting a moderately active solar-type star
Gillon, Michaël ULg; Doyle, A. P.; Lendl, M. et al

in Astronomy and Astrophysics (2011), 533

We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295 ± 0.0009 AU) around a moderately bright (V = 11.6, K = 10) G9 dwarf (0.89 ± 0.08 M[SUB]&sun;[/SUB], 0.84 ± 0 ... [more ▼]

We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295 ± 0.0009 AU) around a moderately bright (V = 11.6, K = 10) G9 dwarf (0.89 ± 0.08 M[SUB]&sun;[/SUB], 0.84 ± 0.03 R[SUB]&sun;[/SUB]) in the Southern constellation Eridanus. Thanks to high-precision follow-up photometry and spectroscopy obtained by the telescopes TRAPPIST and Euler, the mass and size of this planet, WASP-50 b, are well constrained to 1.47 ± 0.09 M[SUB]Jup[/SUB] and 1.15 ± 0.05 R[SUB]Jup[/SUB], respectively. The transit ephemeris is 2 455 558.6120 (±0.0002) + N × 1.955096 (±0.000005) HJD[SUB]UTC[/SUB]. The size of the planet is consistent with basic models of irradiated giant planets. The chromospheric activity (log R'[SUB]HK = -4.67[/SUB]) and rotational period (P[SUB]rot[/SUB] = 16.3 ± 0.5 days) of the host star suggest an age of 0.8 ± 0.4 Gy that is discrepant with a stellar-evolution estimate based on the measured stellar parameters (ρ[SUB]∗[/SUB] = 1.48 ± 0.10 ρ[SUB]&sun;[/SUB], T[SUB]eff[/SUB] = 5400 ± 100 K, [Fe/H] = -0.12 ± 0.08) which favors an age of 7 ± 3.5 Gy. This discrepancy could be explained by the tidal and magnetic influence of the planet on the star, in good agreement with the observations that stars hosting hot Jupiters tend to show faster rotation and magnetic activity. We measure a stellar inclination of 84[SUB]-31[SUP]+6[/SUP][/SUB] deg, disfavoring a high stellar obliquity. Thanks to its large irradiation and the relatively small size of its host star, WASP-50 b is a good target for occultation spectrophotometry, making it able to constrain the relationship between hot Jupiters' atmospheric thermal profiles and the chromospheric activity of their host stars. The photometric time-series used in this work are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/533/A88">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/533/A88</A> [less ▲]

Detailed reference viewed: 21 (1 ULg)
Full Text
Peer Reviewed
See detailWASP-31b: a low-density planet transiting a metal-poor, late-F-type dwarf star
Anderson, D. R.; Collier Cameron, A.; Hellier, C. et al

in Astronomy and Astrophysics (2011), 531

We report the discovery of the low-density, transiting giant planet WASP-31b. The planet is 0.47 Jupiter masses and 1.56 Jupiter radii. It is in a 3.4-day orbit around a 1-Gyr-old, late-F-type, V = 11.7 ... [more ▼]

We report the discovery of the low-density, transiting giant planet WASP-31b. The planet is 0.47 Jupiter masses and 1.56 Jupiter radii. It is in a 3.4-day orbit around a 1-Gyr-old, late-F-type, V = 11.7 star, which is a member of a common proper motion pair. In terms of its low density, WASP-31b is second only to WASP-17b, which is a more highly irradiated planet of similar mass. [less ▲]

Detailed reference viewed: 7 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-23b: a transiting hot Jupiter around a K dwarf and its Rossiter-McLaughlin effect
Triaud, A H M J; Queloz, D.; Hellier, C. et al

in Astronomy and Astrophysics (2011), 531

We report the discovery of a new transiting planet in the southern hemisphere. It was found by the WASP-south transit survey and confirmed photometrically and spectroscopically by the 1.2 m Swiss Euler ... [more ▼]

We report the discovery of a new transiting planet in the southern hemisphere. It was found by the WASP-south transit survey and confirmed photometrically and spectroscopically by the 1.2 m Swiss Euler telescope, LCOGT 2m Faulkes South Telescope, the 60 cm TRAPPIST telescope, and the ESO 3.6 m telescope. The orbital period of the planet is 2.94 days. We find that it is a gas giant with a mass of 0.88 ± 0.10 M[SUB]J[/SUB] and an estimated radius of 0.96 ± 0.05 R[SUB]J[/SUB]. We obtained spectra during transit with the HARPS spectrograph and detect the Rossiter-McLaughlin effect despite its small amplitude. Because of the low signal-to-noise ratio of the effect and a small impact parameter, we cannot place a strong constraint on the projected spin-orbit angle. We find two conflicting values for the stellar rotation. We find, via spectral line broadening, that v sin I = 2.2 ± 0.3 km s[SUP]-1[/SUP], while applying another method, based on the activity level using the index log R'_HK, gives an equatorial rotation velocity of only v = 1.35 ± 0.20 km s[SUP]-1[/SUP]. Using these as priors in our analysis, the planet might be either misaligned or aligned. This result raises doubts about the use of such priors. There is evidence of neither eccentricity nor any radial velocity drift with time. Using WASP-South photometric observations confirmed with LCOGT Faulkes South Telescope, the 60 cm TRAPPIST telescope, the CORALIE spectrograph and the camera from the Swiss 1.2 m Euler Telescope placed at La Silla, Chile, as well as with the HARPS spectrograph, mounted on the ESO 3.6 m, also at La Silla, under proposal 084.C-0185. The data is publicly available at the CDS Strasbourg and on demand to the main author.RV data is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A24">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A24</A>Appendix is available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 8 (2 ULg)
Full Text
Peer Reviewed
See detailSpin-orbit measurements and refined parameters for the exoplanet systems WASP-22 and WASP-26
Anderson, D. R.; Collier Cameron, A.; Gillon, Michaël ULg et al

in Astronomy and Astrophysics (2011), 534

We report on spectroscopic and photometric observations through transits of the exoplanets WASP-22b and WASP-26b, intended to determine the systems' spin-orbit angles. We combine these data with existing ... [more ▼]

We report on spectroscopic and photometric observations through transits of the exoplanets WASP-22b and WASP-26b, intended to determine the systems' spin-orbit angles. We combine these data with existing data to refine the system parameters. We measure a sky-projected spin-orbit angle of 22 ± 16° for WASP-22b, showing the planet's orbit to be prograde and, perhaps, slightly misaligned. We do not detect the Rossiter-McLaughlin effect of WASP-26b due to its low amplitude and observation noise. We place 3-σ upper limits on orbital eccentricity of 0.063 for WASP-22b and 0.050 for WASP-26b. After refining the drift in the systemic velocity of WASP-22 found by Maxted et al. (2010, AJ, 140, 2007), we find the third body in the system to have a minimum-mass of 5.3 ± 0.3 MJup (a3 / 5 AU)2, where a3 is the orbital distance of the third body. [less ▲]

Detailed reference viewed: 10 (5 ULg)
Full Text
Peer Reviewed
See detailWASP-40b: Independent Discovery of the 0.6 M Transiting Exoplanet HAT-P-27b
Anderson, D. R.; Barros, S. C. C.; Boisse, I. et al

in Publications of the Astronomical Society of the Pacific [=PASP] (2011), 123

From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (HAT-P-27b), a 0.6 M planet that transits its 12th magnitude host star every 3.04 days. The host star is of late G ... [more ▼]

From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (HAT-P-27b), a 0.6 M planet that transits its 12th magnitude host star every 3.04 days. The host star is of late G-type or early K-type and likely has a metallicity greater than solar ([Fe/H]=0.14±0.11). The planet's mass and radius are typical of the known hot Jupiters, thus adding another system to the apparent pileup of transiting planets with periods near 3-4 days. Our parameters match those of the recent HATnet announcement of the same planet, thus giving confidence in the techniques used. We report a possible indication of stellar activity in the host star. [less ▲]

Detailed reference viewed: 12 (4 ULg)
Full Text
Peer Reviewed
See detailWASP-41b: A transiting hot Jupiter planet orbiting a magnetically-active G8V star
Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A. et al

in Publications of the Astronomical Society of the Pacific [=PASP] (2011), 123

We report the discovery of a transiting planet with an orbital period of 3.05d orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8V star (V=11.6) with a metallicity close to ... [more ▼]

We report the discovery of a transiting planet with an orbital period of 3.05d orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8V star (V=11.6) with a metallicity close to solar ([Fe/H]=-0.08+-0.09). The star shows evidence of moderate chromospheric activity, both from emission in the cores of the CaII H and K lines and photometric variability with a period of 18.3d and an amplitude of about 1%. The rotation period of the star implies a gyrochronological age for WASP-41 of 1.8Gyr with an error of about 15%. We have used a combined analysis of the available photometric and spectroscopic data to derive the mass and radius of the planet (0.93+-0.06M_Jup, 1.21+-0.06R_Jup). Further observations of WASP-41 can be used to explore the connections between the properties of hot Jupiter planets and the level of chromospheric activity in their host stars. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
See detailThe WASP-South search for transiting exoplanets
Hellier, C.; Anderson, D. R.; Collier Cameron, A. et al

in EPJ Web of Conferences (2011, February 01), 11

Since 2006 WASP-South has been scanning the Southern sky for transiting exoplanets. Combined with Geneva Observatory radial velocities we have so far found over 30 transiting exoplanets around relatively ... [more ▼]

Since 2006 WASP-South has been scanning the Southern sky for transiting exoplanets. Combined with Geneva Observatory radial velocities we have so far found over 30 transiting exoplanets around relatively bright stars of magnitude 9-13. We present a status report for this ongoing survey. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-34b: a near-grazing transiting sub-Jupiter-mass exoplanet in a hierarchical triple system
Smalley, B.; Anderson, D. R.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2011), 526

We report the discovery of WASP-34b, a sub-Jupiter-mass exoplanet transiting its 10.4-magnitude solar-type host star (1SWASP J110135.89-235138.4; TYC 6636-540-1) every 4.3177 days in a slightly eccentric ... [more ▼]

We report the discovery of WASP-34b, a sub-Jupiter-mass exoplanet transiting its 10.4-magnitude solar-type host star (1SWASP J110135.89-235138.4; TYC 6636-540-1) every 4.3177 days in a slightly eccentric orbit (e = 0.038 +/- 0.012). We find a planetary mass of 0.59 +/- 0.01 M_Jup and radius of 1.22 ^{+0.11}_{-0.08} R_Jup. There is a linear trend in the radial velocities of 55+/-4 m/s/y indicating the presence of a long-period third body in the system with a mass > 0.45 M_Jup at a distance of >1.2 AU from the host star. This third-body is either a low-mass star, white dwarf, or another planet. The transit depth ((R_P/R_*)^2 = 0.0126) and high impact parameter (b = 0.90) suggest that this could be the first known transiting exoplanet expected to undergo grazing transits, but with a confidence of only ~80%. [less ▲]

Detailed reference viewed: 5 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-25b: a 0.6 M-J planet in the Southern hemisphere
Enoch, B.; Cameron, A Collier; Anderson, D. R. et al

in Monthly Notices of the Royal Astronomical Society (2011), 410(3), 16311636

We report the detection of a 0.6 M-J extrasolar planet by WASP-South, WASP-25b, transiting its solar-type host star every 3.76d. A simultaneous analysis of the WASP, FTS and Euler photometry and CORALIE ... [more ▼]

We report the detection of a 0.6 M-J extrasolar planet by WASP-South, WASP-25b, transiting its solar-type host star every 3.76d. A simultaneous analysis of the WASP, FTS and Euler photometry and CORALIE spectroscopy yields a planet of R[SUB]p[/SUB] = 1.22 R[SUB]J[/SUB] and M[SUB]p[/SUB] = 0.58 M[SUB]J[/SUB] around a slightly metal-poor solar-type host star, [Fe/H] = - 0.05 +/- 0.10, of R[SUB]*[/SUB] = 0.92 R[SUB]solar[/SUB] and M[SUB]*[/SUB] = 1.00 M[SUB]solar[/SUB]. WASP-25b is found to have a density of ρ[SUB]p[/SUB] = 0.32 ρ[SUB]J[/SUB], a low value for a sub-Jupiter mass planet. We investigate the relationship of planetary radius to planetary equilibrium temperature and host star metallicity for transiting exoplanets with a similar mass to WASP-25b, finding that these two parameters explain the radii of most low-mass planets well. [less ▲]

Detailed reference viewed: 18 (4 ULg)
Full Text
Peer Reviewed
See detailWASP-30b: a 61 Mjup brown dwarf transiting a V=12, F8 star
Anderson, D. R.; Collier Cameron, A.; Hellier, C. et al

in Astrophysical Journal Letters (2011), 726(2), 19

We report the discovery of a 61-Jupiter-mass brown dwarf (BD), which transits its F8V host star, WASP-30, every 4.16 days. From a range of age indicators we estimate the system age to be 1-2 Gyr. We ... [more ▼]

We report the discovery of a 61-Jupiter-mass brown dwarf (BD), which transits its F8V host star, WASP-30, every 4.16 days. From a range of age indicators we estimate the system age to be 1-2 Gyr. We derive a radius (0.89 ± 0.02 R Jup) for the companion that is consistent with that predicted (0.914 R Jup) by a model of a 1 Gyr old, non-irradiated BD with a dusty atmosphere. The location of WASP-30b in the minimum of the mass-radius relation is consistent with the quantitative prediction of Chabrier & Baraffe, thus confirming the theory. [less ▲]

Detailed reference viewed: 23 (0 ULg)
See detailA much lower density for the transiting extrasolar planet WASP-7.
Southworth, J.; Dominik, M.; Jorgensen, U~G et al

Textual, factual or bibliographical database (2011)

Detailed reference viewed: 17 (7 ULg)
Full Text
Peer Reviewed
See detailA much lower density for the transiting extrasolar planet WASP-7 (Research Note)
Southworth, J.; Dominik, M.; Jorgensen, U~G et al

in Astronomy and Astrophysics (2011), 527

We present the first high-precision photometry of the transiting extrasolar planetary system WASP-7, obtained using telescope defocussing techniques and reaching a scatter of 0.68 mmag per point. We find ... [more ▼]

We present the first high-precision photometry of the transiting extrasolar planetary system WASP-7, obtained using telescope defocussing techniques and reaching a scatter of 0.68 mmag per point. We find that the transit depth is greater and that the host star is more evolved than previously thought. The planet has a significantly larger radius (1.330 +/- 0.093 Rjup versus 0.915 +0.046 -0.040 Rjup) and much lower density (0.41 +/- 0.10 rhojup versus 1.26 +0.25 -0.21 rhojup) and surface gravity (13.4 +/- 2.6 m/s2 versus 26.4 +4.4 -4.0 m/s2) than previous measurements showed. Based on the revised properties it is no longer an outlier in planetary mass--radius and period--gravity diagrams. We also obtain a more precise transit ephemeris for the WASP-7 system. [less ▲]

Detailed reference viewed: 18 (11 ULg)
Full Text
Peer Reviewed
See detailWASP-22 b: A Transiting "Hot Jupiter" Planet in a Hierarchical Triple System
Maxted, P. F. L.; Anderson, D. R.; Gillon, Michaël ULg et al

in Astrophysical Journal (2010), 140(6), 2007-2012

We report the discovery of a transiting planet orbiting the star TYC 6446-326-1. The star, WASP-22, is a moderately bright (V = 12.0) solar-type star (T[SUB]eff[/SUB] = 6000 ± 100 K, [Fe/H] = –0.05 ± 0.08 ... [more ▼]

We report the discovery of a transiting planet orbiting the star TYC 6446-326-1. The star, WASP-22, is a moderately bright (V = 12.0) solar-type star (T[SUB]eff[/SUB] = 6000 ± 100 K, [Fe/H] = –0.05 ± 0.08). The light curve of the star obtained with the WASP-South instrument shows periodic transit-like features with a depth of about 1% and a duration of 0.14 days. The presence of a transit-like feature in the light curve is confirmed using z-band photometry obtained with Faulkes Telescope South. High-resolution spectroscopy obtained with the CORALIE and HARPS spectrographs confirms the presence of a planetary mass companion with an orbital period of 3.533 days in a near-circular orbit. From a combined analysis of the spectroscopic and photometric data assuming that the star is a typical main-sequence star we estimate that the planet has a mass M [SUB]p[/SUB] = 0.56 ± 0.02M [SUB]Jup[/SUB] and a radius R [SUB]p[/SUB] = 1.12 ± 0.04R [SUB]Jup[/SUB]. In addition, there is a linear trend of 40 m s[SUP]–1[/SUP] yr[SUP]–1[/SUP] in the radial velocities measured over 16 months, from which we infer the presence of a third body with a long-period orbit in this system. The companion may be a low mass M-dwarf, a white dwarf, or a second planet. [less ▲]

Detailed reference viewed: 37 (4 ULg)
Full Text
Peer Reviewed
See detailSpin-orbit angle measurements for six southern transiting planets. New insights into the dynamical origins of hot Jupiters
Triaud, A H M J; Collier Cameron, A.; Queloz, D. et al

in Astronomy and Astrophysics (2010), 524

Context. Several competing scenarios for planetary-system formation and evolution seek to explain how hot Jupiters came to be so close to their parent stars. Most planetary parameters evolve with time ... [more ▼]

Context. Several competing scenarios for planetary-system formation and evolution seek to explain how hot Jupiters came to be so close to their parent stars. Most planetary parameters evolve with time, making it hard to distinguish between models. The obliquity of an orbit with respect to the stellar rotation axis is thought to be more stable than other parameters such as eccentricity. Most planets, to date, appear aligned with the stellar rotation axis; the few misaligned planets so far detected are massive (> 2 M[SUB]J[/SUB]). <BR /> Aims: Our goal is to measure the degree of alignment between planetary orbits and stellar spin axes, to search for potential correlations with eccentricity or other planetary parameters and to measure long term radial velocity variability indicating the presence of other bodies in the system. <BR /> Methods: For transiting planets, the Rossiter-McLaughlin effect allows the measurement of the sky-projected angle β between the stellar rotation axis and a planet's orbital axis. Using the HARPS spectrograph, we observed the Rossiter-McLaughlin effect for six transiting hot Jupiters found by the WASP consortium. We combine these with long term radial velocity measurements obtained with CORALIE. We used a combined analysis of photometry and radial velocities, fitting model parameters with the Markov Chain Monte Carlo method. After obtaining β we attempt to statistically determine the distribution of the real spin-orbit angle ψ. <BR /> Results: We found that three of our targets have β above 90°: WASP-2b: β = 153°[SUP]+11[/SUP][SUB]-15[/SUB], WASP-15b: β = 139.6°[SUP]+5.2[/SUP][SUB]-4.3[/SUB] and WASP-17b: β = 148.5°[SUP]+5.1[/SUP][SUB]-4.2[/SUB]; the other three (WASP-4b, WASP-5b and WASP-18b) have angles compatible with 0°. We find no dependence between the misaligned angle and planet mass nor with any other planetary parameter. All six orbits are close to circular, with only one firm detection of eccentricity e = 0.00848[SUP]+0.00085[/SUP][SUB]-0.00095[/SUB] in WASP-18b. No long-term radial acceleration was detected for any of the targets. Combining all previous 20 measurements of β and our six and transforming them into a distribution of ψ we find that between about 45 and 85% of hot Jupiters have ψ > 30°. <BR /> Conclusions: Most hot Jupiters are misaligned, with a large variety of spin-orbit angles. We find observations and predictions using the Kozai mechanism match well. If these observational facts are confirmed in the future, we may then conclude that most hot Jupiters are formed from a dynamical and tidal origin without the necessity to use type I or II migration. At present, standard disc migration cannot explain the observations without invoking at least another additional process. Using observations with the high resolution échelle spectrograph HARPS mounted on the ESO 3.6 m (under proposals 072.C-0488, 082.C-0040 & 283.C-5017), and with the high resolution échelle spectrograph CORALIE on the 1.2 m Euler Swiss Telescope, both installed at the ESO La Silla Observatory in Chile.RV data is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/524/A25">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/524/A25</A> [less ▲]

Detailed reference viewed: 12 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-32b: A transiting hot Jupiter planet orbiting a lithium-poor, solar-type star
Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A. et al

in Publications of the Astronomical Society of the Pacific [=PASP] (2010), 122(898), 1465-1470

We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V=11.3) solar-type star (Teff=6100 +- 100K, [Fe/H] = -0.13 +- 0.10). The ... [more ▼]

We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V=11.3) solar-type star (Teff=6100 +- 100K, [Fe/H] = -0.13 +- 0.10). The lightcurve of the star obtained with the WASP-South and WASP-North instruments shows periodic transit-like features with a depth of about 1% and a duration of 0.10d every 2.72d. The presence of a transit-like feature in the lightcurve is confirmed using z-band photometry obtained with Faulkes Telescope North. High resolution spectroscopy obtained with the CORALIE spectrograph confirms the presence of a planetary mass companion. From a combined analysis of the spectroscopic and photometric data, assuming that the star is a typical main-sequence star, we estimate that the planet has a mass M_p = 3.60 +- 0.07 M_Jup and a radius R_p = 1.19 +- 0.06R_Jup. WASP-32 is one of a small group of hot Jupiters with masses M_p > 3M_Jup. We find that some stars with hot Jupiter companions and with masses M_* =~ 1.2M_sun, including WASP-32, are depleted in lithium, but that the majority of these stars have similar lithium abundances to field stars. [less ▲]

Detailed reference viewed: 9 (0 ULg)