References of "Grignard, Bruno"
     in
Bookmark and Share    
See detailSuperhydrophobic surfaces by electrospinning of polymer mixtures
Grignard, Bruno ULg; Vaillant, Alexandre; De Coninck, Joel et al

Poster (2009, December 14)

Detailed reference viewed: 37 (6 ULg)
Full Text
Peer Reviewed
See detailFirst example of “click” copper(I) catalyzed azide-alkyne cycloaddition in supercritical carbon dioxide: Application to the functionalization of aliphatic polyesters
Grignard, Bruno ULg; Schmeits, Stephanie ULg; Riva, Raphaël ULg et al

in Green Chemistry (2009), 11

The modification of aliphatic polyesters by the copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) was successfully implemented in supercritical carbon dioxide (scCO2). Due to the remarkable ... [more ▼]

The modification of aliphatic polyesters by the copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) was successfully implemented in supercritical carbon dioxide (scCO2). Due to the remarkable properties of scCO2, the CuAAC reaction turned out to be quantitative even though the aliphatic polyesters used in this work were insoluble in scCO2. Interestingly enough, the conditions were mild enough to prevent polymer degradation from occurring and finally, efficient removal of the catalyst (>96%) was achieved by scCO2 extraction. [less ▲]

Detailed reference viewed: 105 (34 ULg)
Full Text
See detailNew perfulorinated macroligand for the implementation of dispersion atom transfer radical polymerization in sc CO2
Grignard, Bruno ULg; Calberg, Cédric ULg; Jérôme, Christine ULg et al

Poster (2009, September 17)

Due to an increasing need for polymers with well-defined architecture (diblock-, graft-, star-shaped copolymers), molecular weight and/or functional end-groups, the use of controlled radical ... [more ▼]

Due to an increasing need for polymers with well-defined architecture (diblock-, graft-, star-shaped copolymers), molecular weight and/or functional end-groups, the use of controlled radical polymerization (CRP) in scCO2 has started to gain attention. Among all the controlled processes, Atom Transfer Radical Polymerization has emerged as a robust tool for the preparation of polymers with well-defined molecular weight, architecture and chain-end functionality. In a very recent paper, we reported the first efficient dispersion ATRP of methyl methacrylate (MMA) in scCO2 using a fluorinated polymeric ligand that had a dual role, i.e., the complexation of the copper salt and the stabilization of PMMA growing particles. In this contribution, we extended this new system to the dispersion ATRP of styrene2, to the synthesis of diblock copolymers beads2 or to the preparation of PMMA particles by AGET ATRP. Because both ATRP and alkyne-azide Huisgen’s 1,3-dipolar cycloaddition relies on the use of a Cu(I) catalyst, synthesis of pyrene end-functionalized polymers by simultaneous dispersion ATRP and click reaction was also investigated in supercritical carbon dioxide. Finally, the immobilization of these new macroligands onto an inorganic support leads to the formation of pseudo-homogeneous catalyst that were successfully used to prepare CO2-soluble perfluorinated methacrylate and depending on the molecular weight and TEDETA composition of the macroligand, results obtained by supported ATRP without addition of Cu(II) as deactivator are identical to those obtained by homogeneous ATRP. [less ▲]

Detailed reference viewed: 33 (4 ULg)
Full Text
See detailIn situ formation of stabilizers for the implementation of dispersion nitroxide mediated polymerization of MMA in supercritical carbon dioxide
Grignard, Bruno ULg; Gigmes, Didier; Jérôme, Christine ULg et al

Poster (2009, September 17)

Controlled dispersion Nitroxide Mediated Polymerization (NMP) of methyl methacrylate (MMA) was successfully carried out for the first time in supercritical carbon dioxide (scCO2) in the presence of CO2 ... [more ▼]

Controlled dispersion Nitroxide Mediated Polymerization (NMP) of methyl methacrylate (MMA) was successfully carried out for the first time in supercritical carbon dioxide (scCO2) in the presence of CO2-philic perfluorinated surfactant that was generated “in situ”. The control of the MMA polymerization relies on the strategy developed by Charleux et al. that consists of using a SG1-based alkoxyamine, i.e. the block-builder, in the presence of small amount of styrene. In a first step, CO2 soluble polyheptadecafluorodecylacrylate was prepared in scCO2 using block-builder as an alkoxyamine. In a second step, nitroxide SG1 mediated dispersion polymerization of MMA was conducted at 70°C and 300 bar in the presence of 5 w% of SG1 terminated surfactant compared to the monomer. Different monomer to alkoxyamine molar ratios were investigated in order to target different molecular weights. In each case, the monomer conversion was high (>90 %), the experimental molecular weight was in good agreement with the theoretical value and the polydispersity was narrow (Mw/Mn ~1.2). Moreover, after depressurisation of the cell, PMMA was collected as a free flowing powder consisting of small sized microspheres. [less ▲]

Detailed reference viewed: 36 (7 ULg)
Full Text
See detailNew developments in the functionalization of aliphatic polyesters by "click" copper-catalyzed azide-alkyne cycloaddition
Lecomte, Philippe ULg; Riva, Raphaël ULg; Schmeits, Stephanie ULg et al

Conference (2009, June 03)

Nowadays, biodegradable and biocompatible aliphatic polyesters are widely used as environmentally friendly thermoplastics and biomaterials. Nevertheless, the absence of any pendant functional group is a ... [more ▼]

Nowadays, biodegradable and biocompatible aliphatic polyesters are widely used as environmentally friendly thermoplastics and biomaterials. Nevertheless, the absence of any pendant functional group is a severe limitation for the development of novel applications. Our strategy aiming at functionalizing aliphatic polyesters relies on the “click” copper-catalyzed cycloaddition (CuAAC) of alkynes duly substituted by functional groups or even chains onto PCL bearing pendant azides. The aliphatic polyesters bearing pendant azides have been very efficiently synthesized by a straightforward approach, which relies on the ring-opening copolymerization of αClεCL (or γBrεCL) and εCL (or lactide) followed by reaction with sodium azide to convert pendant chlorides or bromides into azides. The alternative reported by Emrick et al. is based on the CuAAC reaction of azides substituted by any functional group onto copolyesters of poly(ε-caprolactone) bearing pendant alkynes. Interestingly enough, Emrick et al. carried out the CuAAc reaction in water at 80°C. Unfortunately, it turned out, at least in our hands, that these conditions can not be extended to the derivatization of more sensitive aliphatic polyesters because degradation was then unavoidable. Nevertheless, we found out that degradation can be minimized whenever the CuAAC reaction is carried out in an organic solvent at lower temperature. Typically, the CuAAC reaction was carried out in DMF or THF at 35°C. Recently, it was shown that supercritical carbon dioxide can be used as a more environmentally friendly solvent than DMF or THF. The contamination by catalytic residues of aliphatic polyesters functionalized by the CuAAC reaction is a severe limitation in view of future applications, especially in the biomedical field. In the last part of this talk, a special attention will be paid on our current efforts to get rid of copper residues. [less ▲]

Detailed reference viewed: 55 (21 ULg)
Full Text
See detailPreparation of living polymer microspheres by dispersion atom transfer radical polymerization in scCO2 using fluorinated macroligands
Grignard, Bruno ULg; Calberg, Cédric ULg; Jérôme, Christine ULg et al

Poster (2009, May 19)

Due to an increasing need for polymers with well-defined architecture (diblock-, graft-, star-shaped copolymers), molecular weight and/or functional end-groups, the use of controlled radical ... [more ▼]

Due to an increasing need for polymers with well-defined architecture (diblock-, graft-, star-shaped copolymers), molecular weight and/or functional end-groups, the use of controlled radical polymerization (CRP) in scCO2 has started to gain attention. Among all the controlled processes, Atom Transfer Radical Polymerization has emerged as a robust tool for the preparation of polymers with well-defined molecular weight, architecture and chain-end functionality. In a very recent paper, we reported the first efficient dispersion ATRP of methyl methacrylate (MMA) in scCO2 using a fluorinated polymeric ligand that had a dual role, i.e., the complexation of the copper salt and the stabilization of PMMA growing particles. In this contribution, we extended this new system to the dispersion ATRP of styrene, to the synthesis of diblock copolymers beads and the controlled synthesis of hyperbranched copolymers. Finally, because both ATRP and alkyne-azide Huisgen’s 1,3-dipolar cycloaddition relies on the use of a Cu(I) catalyst, synthesis of pyrene end-functionalized polymers by simultaneous dispersion ATRP and click reaction was also investigated in supercritical carbon dioxide. [less ▲]

Detailed reference viewed: 45 (6 ULg)
Full Text
See detailFunctionalization of aliphatic polyesters by “click chemistry” in supercritical carbon dioxide
Grignard, Bruno ULg; Schmeits, Stephanie ULg; Riva, Raphaël ULg et al

Poster (2009, May 14)

The combination of ring-opening polymerization of lactones and “click” copper-catalyzed Huisgen’s [3+2] cycloaddition is known to be a very efficient strategy for the functionalization of poly(ε ... [more ▼]

The combination of ring-opening polymerization of lactones and “click” copper-catalyzed Huisgen’s [3+2] cycloaddition is known to be a very efficient strategy for the functionalization of poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA). Whenever the “click” reaction occurs in an organic solvent (THF or DMF), at relatively low temperature (35°C) and within short reaction time (2 hours), no significant degradation of polyester chains is detected. This strategy was implemented in previous works to graft alkynes substituted by different functional groups, such as hydroxyl, tertiary amines, acrylates or ammonium salts onto azide-functionalized PCL. Moreover, this approach was previously extended to the synthesis of grafted copolymers, either by the grafting of omega-alkyne-PEO onto azide-functionalized aliphatic PLA or PCL (“grafting onto” technique) either by grafting of an ATRP initiator followed by the polymerization of vinyl monomers, such as styrene (“grafting from” technique). These functionalized aliphatic polyesters are promising materials for the development of new biomedical devices. In this work, novel conditions were implemented for the “click” reaction in order to avoid the use of organic solvents and to limit the amount of catalyst remnants in functionalized aliphatic polyesters. Toward this end, if was found that the functionalization by “click” chemistry can be efficiently carried out in supercritical carbon dioxide rather than in THF or DMF. For that sake, it turned out necessary to synthesize a perfluorinated polyamine in order to solubilize the catalyst in supercritical carbon dioxide. Aliphatic polyesters are not soluble in supercritical carbon dioxide. Nevertheless, even under heterogeneous conditions, the functionalization of aliphatic polyesters by “click” chemistry is quantitative. Interestingly enough, no degradation was observed. Last but not least, the copper catalyst was easily removed by supercritical fluid extraction leading to a very low content of residual copper in the final copolyester. [less ▲]

Detailed reference viewed: 129 (16 ULg)
Full Text
See detailDispersion nitroxide mediated polymerization of MMA in supercritical carbon dioxide
Grignard, Bruno ULg; Gigmes, Didier; Jérôme, Christine ULg et al

Poster (2009, May 14)

Controlled dispersion Nitroxide Mediated Polymerization (NMP) of methyl methacrylate (MMA) was successfully carried out for the first time in supercritical carbon dioxide (scCO2) in the presence of CO2 ... [more ▼]

Controlled dispersion Nitroxide Mediated Polymerization (NMP) of methyl methacrylate (MMA) was successfully carried out for the first time in supercritical carbon dioxide (scCO2) in the presence of CO2-philic perfluorinated surfactant that was generated “in situ”. The control of the MMA polymerization relies on the strategy developed by Charleux et al. that consists of using a SG1-based alkoxyamine, i.e. the block-builder, in the presence of small amount of styrene. In a first step, CO2 soluble polyheptadecafluorodecylacrylate was prepared in scCO2 using block-builder as an alkoxyamine. In a second step, nitroxide SG1 mediated dispersion polymerization of MMA was conducted at 70°C and 300 bar in the presence of 5 w% of SG1 terminated surfactant compared to the monomer. Different monomer to alkoxyamine molar ratios were investigated in order to target different molecular weights. In each case, the monomer conversion was high (>90 %), the experimental molecular weight was in good agreement with the theoretical value and the polydispersity was narrow (Mw/Mn ~1.2). Moreover, after depressurisation of the cell, PMMA was collected as a free flowing powder consisting of small sized microspheres. [less ▲]

Detailed reference viewed: 59 (8 ULg)
See detailPolymer membrane by electrospinning
Aqil, Abdelhafid ULg; Grignard, Bruno ULg; Croisier, Florence ULg et al

Poster (2008, November 28)

Detailed reference viewed: 34 (8 ULg)
Full Text
See detailDesign of perfluorinated macroligand for the implementation of atom transfer radical polymerization in supercritical carbon dioxide
Grignard, Bruno ULg; Jérôme, Christine ULg; Calberg, Cédric ULg et al

Conference (2008, November 28)

Due to an increasing need for polymers with well-defined architecture (diblock-, graft-, star-shaped copolymers), molecular weight and/or functional end-groups, the use of controlled radical ... [more ▼]

Due to an increasing need for polymers with well-defined architecture (diblock-, graft-, star-shaped copolymers), molecular weight and/or functional end-groups, the use of controlled radical polymerization (CRP) in scCO2 has started to gain attention. Among all the controlled processes, Atom Transfer Radical Polymerization has emerged as a robust tool for the preparation of polymers with well-defined molecular weight, architecture and chain-end functionality. The goal of the research relies on the development of ATRP of vinyl monomers in scCO2. Perfluorinated polymethacrylate, i.e. poly2,2,2-trifluoroethyl methacrylate (PFMA), was successfully prepared by homogenous ATRP using a polymeric ligand in order to complex the copper catalyst. CO2-soluble poly(2,2,2-trifluoroethylmethacrylate) was also prepared in supercritical CO2 by supported ATRP using a “pseudo-homogeneous” catalyst consisting of copper (I) ligated by macroligand immobilized onto an inorganic support, that results in polymers with well defined molecular weight and low polydispersity. The first efficient dispersion ATRP of methyl methacrylate (MMA) in scCO2 using a fluorinated polymeric ligand that had a dual role, i.e., the complexation of the copper salt and the stabilization of PMMA growing particles was also reported and the concept of dispersion ATRP was extended to the dispersion ATRP of styrene, to the synthesis of diblock copolymers beads using PMMA beads as macroinitiators, leading to (co)polymers with predictable molecular weight and narrow polydispersity. Finally, because both ATRP and alkyne-azide Huisgen’s 1,3-dipolar cycloaddition relies on the use of a Cu(I) catalyst, synthesis of pyrene end-functionalized polymers by simultaneous dispersion ATRP and click reaction was also investigated in supercritical carbon dioxide, leading to the formation of PMMA of well defined characteristics that was collected as fluorescent micropheres. [less ▲]

Detailed reference viewed: 41 (6 ULg)
Full Text
Peer Reviewed
See detailDispersion Atom Transfer Radical Polymerization of vinyl monomers in supercritical carbon dioxide
Grignard, Bruno ULg; Jérôme, Christine ULg; Calberg, Cédric ULg et al

in Macromolecules (2008), 41(22), 8575-8563

Controlled dispersion atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was successfully carried out in supercritical carbon dioxide in the presence of aminated fluoropolymers ... [more ▼]

Controlled dispersion atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was successfully carried out in supercritical carbon dioxide in the presence of aminated fluoropolymers. These materials played the dual role of macroligand for the copper bromide and also steric stabilizer to support formation of polymer microspheres. The livingness of the PMMA beads was confirmed by the one-pot two-step PMMA chain extension and the synthesis of poly(methyl methacrylate)-b-poly(2,2,2-trifluoroethyl methacrylate) (PMMA-b-PFMA) diblock copolymer in scCO2. Successful activator generated by electron transfer (AGET) for ATRP of MMA, using tin ethylhexanoate as a reducing agent, is also discussed, and the concept of dispersion ATRP of MMA was successfully extended to the controlled dispersion polymerization of styrene by ATRP leading to the formation of PS microparticles. Finally, due to the high solubility of the catalyst in scCO2, the purification of PMMA was investigated by supercritical fluid extraction, leading to the preparation of PMMA beads with low residual catalyst traces. [less ▲]

Detailed reference viewed: 53 (8 ULg)
Full Text
Peer Reviewed
See detailSynthesis of biodegradable poly-epsilon-caprolactone microspheres by dispersion ring-opening polymerization in supercritical carbon dioxide
Grignard, Bruno ULg; Stassin, Fabrice; Calberg, Cédric ULg et al

in Biomacromolecules (2008), 9(11), 3141-3149

A series of fluorinated diblock and triblock copolymers of poly(ε-caprolactone) and poly(heptadecafluorodecylacrylate) were prepared by combining ring-opening polymerization of ε-CL and atom transfer ... [more ▼]

A series of fluorinated diblock and triblock copolymers of poly(ε-caprolactone) and poly(heptadecafluorodecylacrylate) were prepared by combining ring-opening polymerization of ε-CL and atom transfer radical polymerization of the acrylate. These copolymers with well-controlled molecular weight and composition were characterized by 1H NMR spectroscopy and used as stabilizers for the dispersion ring-opening polymerization of ε-CL in supercritical carbon dioxide. The effect of composition and architecture of the polymeric stabilizers on the stabilization of PCL microspheres was investigated. Finally, purification of PCL was successfully implemented by reactive supercritical fluid extraction of the tin catalyst. [less ▲]

Detailed reference viewed: 62 (10 ULg)
Full Text
See detailSupercritical carbon dioxide, a tool for the dispersion ROP of lactone and PCL foaming: Part A
Grignard, Bruno ULg; Urbanczyk, Laetitia ULg; Stassin, Fabrice et al

Poster (2008, June 02)

Aliphatic polyesters, namely polylactide (PLA) and poly-ε-caprolactone (PCL) are biodegradable and biocompatible materials that find applications as resorbable suture (PLA) and drugs delivery vectors (PCL ... [more ▼]

Aliphatic polyesters, namely polylactide (PLA) and poly-ε-caprolactone (PCL) are biodegradable and biocompatible materials that find applications as resorbable suture (PLA) and drugs delivery vectors (PCL). Nevertheless, these polymers were mainly prepared by ring opening polymerization using aluminum alkoxide or tin alkoxide initiators in organic media. Recently, the use of supercritical carbon dioxide as polymerization medium was proposed as a potential alternative to the use toxic organic solvents. Nevertheless, due to the non-solubility of PCL in this medium, the growing chains rapidly precipitate during their synthesis leading to the formation of a bulky material that is typical of a precipitation polymerization. This work aims at investigating the dispersion ring-opening polymerization (ROP) of ε-caprolactone in the presence of fluoropolymer-based stabilizers, that were prepared by combining the ring opening polymerization of ε-caprolactone and atom transfer radical polymerization of heptadecafluorodecylacrylate (AC8) and so, stabilizing PCL micrometric particles in supercritical carbon dioxide. In practice, the ROP of CL was initiated by dibutyltin dimethoxide in the presence of PCL-b-PAC8 diblock stabilizers of differents molecular weight and composition. After 24h at 40°C, PCL was collected as a powder that consists of small-sized microspheres. Finally, post-polymerization purification of PCL (removal of tin catalyst that may lead to toxicological problems) was demonstrated to be quite feasible by supercritical fluid extraction (SFE) leading to the preparation of PCL with low catalytic residues. The second goal of this work aims at reporting on the use of sc CO2 for the preparation of foams of poly(epsilon-caprolactone) (PCL), that could be useful in the packaging sector and/or the biomedical sector as potential scaffolds for tissue engineering but also as substitutes for polystyrene thermoformed trays. The method that consists of saturating a polymer with a compressed or supercritical fluid, such as carbon dioxide followed by depressurization and polymer expansion was investigated. Indeed, no residual product is left in the foam, no toxic gas is produced and no resort to hydrocarbon solvents is required. Moreover, CO2 is cheap, non-toxic, recyclable, non-flammable and the technology of CO2-assisted foaming can be used in either a batch mode or in a continuous mode within a high-pressure extruder. [less ▲]

Detailed reference viewed: 72 (4 ULg)
Full Text
See detailSuperhydrophobic surfaces by electrospinning of polymer mixtures
Grignard, Bruno ULg; Vaillant, Alexandre; De Coninck, Joel et al

Poster (2008, May 22)

Hydrophobic surfaces have found great interest in environment resist coating, antifouling marine structures and low friction devices whereas superhydrophobic materials, with contact angle higher than 150° ... [more ▼]

Hydrophobic surfaces have found great interest in environment resist coating, antifouling marine structures and low friction devices whereas superhydrophobic materials, with contact angle higher than 150°, are of special interest in self-cleaning surfaces and stain resistant textiles. (Super)hydrophobicity is a key property that depends on both the surface chemistry and surface roughness. Numerous methods were reported for the preparation of superhydrophobic surfaces by either increasing the surface roughness of an inherently hydrophobic material or decreasing the surface free energy of a rough surface by post-treatment. For instance, controlled crystallization, lithography , etching were reported in the literature for the production of such surfaces. Nevertheless, all these techniques suffer from some drawback such as high cost, time consuming and expensive processes. As an alternative approach, electrospinning was proposed for the production of superhydrophobic surfaces with controlled roughness, morphology and/or porosity. For instance, Acatay et Al. reported on the preparation of electrospun fibers starting from a poly(AN-co-TMI)/fluorolink-D mixture followed by the annealing of these material in order to enable the reorientation of the perfluorinated groups to the solid-air interface. Rutledge et al. described the preparation of superhydrophobic surfaces by combining electrospinning of PCL and initiated chemical vapor deposition of perfluoroalkyl ethyl methacrylate. Allcock et al. prepared superhydrophibic nanofibers by electrospinning of an organic-soluble poly[bis(2,2,2-trifluoroethoxy)phosphazene]. In order to simplify the experimental protocols described in the literature on the preparation of superhydrophobic surfaces and decrease the cost related to the use of pure fluoropolymers, electrospinning of homopolymer/semifluorinated diblock copolymer mixture, i.e. a polyisobornylacrylate/poly(isobornyl acrylate-b-heptadecafluorodecyl acrylate) mixture, onto aluminum plates is proposed in this study. In practice, a diblock copolymer based on 1H,1H,2H,2H heptadecafluorodecyl acrylate and isobornyl acrylate was prepared by RAFT polymerization. In a second step, electrospinning of PIBA/PAC8-b-PIBA mixtures of different compositions was investigated. At high fluorine content ([PIBA]/[PAC8-b-PIBA] = 50/50), the electrospun mats show high surface roughness (microparticles of undefined morphologies) and a superhydrophic character. By decreasing the fluorine content, the morphology of the films changed from particles to beaded fibers (([PIBA]/[PAC8-b-PIBA] = 70/30) or fibers (([PIBA]/[PAC8-b-PIBA] = 85/15), which is consistent with an increase of the solution viscosity, but the surfaces still demonstrate or tend to superhydrophobicity. [less ▲]

Detailed reference viewed: 122 (2 ULg)
Full Text
Peer Reviewed
See detailAtom transfer radical polymerization of MMA with a macromolecular ligand in a fluorinated solvent and in supercritical carbon dioxide
Grignard, Bruno ULg; Jérôme, Christine ULg; Calberg, Cédric ULg et al

in European Polymer Journal (2008), 44(3), 861-871

Macromolecular fluorinated ligands were prepared according to a three-step strategy that consists of the random copolymerization of heptadecafluorodecyl acrylate and 2-hydroxyethylacrylate, followed by ... [more ▼]

Macromolecular fluorinated ligands were prepared according to a three-step strategy that consists of the random copolymerization of heptadecafluorodecyl acrylate and 2-hydroxyethylacrylate, followed by the esterification of the pendant hydroxyl groups with acryloyl chloride and the Michael-type addition of tetraethyldiethylenetriamine onto the acrylic double bonds of the polymeric chains. These fluorinated macroligands were successfully used in the atom transfer radical polymerization of MMA catalyzed by a copper salt in a fluorinated solvent. The polymerization control was analyzed in relation to the copper salt, the initiator and the molecular weight and composition of the macroligand before being extended to the heterogeneous ATRP of MMA in scCO2. [less ▲]

Detailed reference viewed: 47 (3 ULg)
Full Text
Peer Reviewed
See detailSupported ATRP of fluorinated methacrylates in supercritical carbon dioxide : preparation of scCO2 soluble polymers with low catalytic residues
Grignard, Bruno ULg; Calberg, Cédric ULg; Jérôme, Christine ULg et al

in Chemical Communications (2008), (44), 5803-5805

Synthesis of poly( 2,2,2-trifluoroethyl methacrylate) by supported ATRP was investigated in supercritical carbon dioxide using a copper salt ligated to a polymeric ligand immobilised onto silica; after ... [more ▼]

Synthesis of poly( 2,2,2-trifluoroethyl methacrylate) by supported ATRP was investigated in supercritical carbon dioxide using a copper salt ligated to a polymeric ligand immobilised onto silica; after polymerisation, fluorinated polymers with well defined molecular weight and low polydispersity were obtained. [less ▲]

Detailed reference viewed: 43 (4 ULg)
Full Text
Peer Reviewed
See detailCopper bromide complexed by fluorinated macroligands: towards microspheres by ATRP of vinyl monomers in scCO2
Grignard, Bruno ULg; Jérôme, Christine ULg; Calberg, Cédric ULg et al

in Chemical Communications (2008), (3), 314-316

We report the successful synthesis of poly(methyl methacrylate) (PMMA) by atom transfer radical polymerization using a catalyst ligated to a polymeric ligand having a dual role, i.e., the complexation of ... [more ▼]

We report the successful synthesis of poly(methyl methacrylate) (PMMA) by atom transfer radical polymerization using a catalyst ligated to a polymeric ligand having a dual role, i.e., the complexation of the copper salt and the stabilization of the growing PMMA particles; at the end of the polymerization, the catalyst is removed by supercritical fluid extraction leading to PMMA microspheres with low residual catalyst content. [less ▲]

Detailed reference viewed: 25 (5 ULg)